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Abstract

This thesis is concerned with the problem of reconstructing a discrete two-dimensional
signal of known support from the Fourier transform magnitude only. This problem
arises in many fields where imaging is desired, such as astronomy and wavefront sens-

4 I ing.
Since the autocorrelation function is easily calculated from the Fourier transform

magnitude, we attack the equivalent problem of signal reconstruction from a known
autocorrelation function. The main result of the thesis is a new algorithm for realizing
this reconstruction. This algorithm is guaranteed to yield the correct solution given

N accurate measurements and is much more computationally attractive than previous
reconstruction algorithms. The result is based on the detailed analysis of the zeros
of a polynomial which is essentially the two-dimensional z-transform of the known
autocorrelation signal. From this analysis, a large number of zeros of the z-transform
of the unknown discrete signal are extracted. This set of zeros is then used to extract
the signal values via the solution of a set of linear equations.

Examples of the application of this algorithm to several families of images is pre-
sented, along with a discussion of the accuracy and computational requirements of the
new algorithm. We conclude with a discussion of the application of the ideas of this

.7 thesis to the area of two-dimensional filter design and stability testing.
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Chapter 1

Intro duct ion

The magnitude and phase of the Fourier transform of an arbitrary multidimensional

signal are independent functions of frequency. In many applications, however, there

is additional information regarding the signal which provides a very strong connection

*between its Fourier transform magnitude and phase. One example of such additional

information is the common condition that the signal is non-zero only over a specified

* region. In this case, it has been shown that almost all multidimensional signals which

* are non-zero only over a specified region are uniquely specified, in a sense, by knowl-

edge of only its Fourier transform magnitude 11,21. Hence, once the Fourier transform

* magnitude is known, the Fourier transform phase is determined as well. For this rea-

son, the problem of reconstruction from Fourier transform magnitude is also called the

* phase retrieval problem.

The reconstruction of a two-dimensional signal from its Fourier transform magni-

N tude has been the object of much study. This interest is guided by the wide range of

applications of results in this area. One such application is in astronomy (3]. The effect

- ".7
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limiting the resolution capabilities of the largest optical telescopes is not the diffraction

limit of the lens, but rather the turbulence of the earth's atmosphere. During a short

time period, the atmosphere can be considered to introduce on the incoming optical

wave a spatially varying, time-invariant random phase delay due to inhomogeneities

induced by thermal gradients. These inhomogeneities are slowly varying with respect

to short exposure times. Thus, over such a short time period, the atmosphere can be

modeled as a glass plate of spatially varying thickness over the telescope aperture.

This phase aberration, although it blurs each individual exposed image, does not

affect the spatial autocorrelation function. A way of circumventing this blurring effect

is to first measure an accurate estimate of the spatial autocorrelation function. This

can be done via Labeyrie interferometry [4]. In this procedure an interferometer is

used to image the spatial autocorrelation function over a small time period. This

estimate will be very noisy because of the short exposure time. The signal-to-noise

ratio however can be increased by averaging several short exposures. Thus a diffraction

limited autocorrelation function can be measured which is not affected by atmospheric

blurring. It is clear that a reliable method for extracting the image of the astronomical

object from such interferometer data would in effect greatly increase the resolution

capabilities of earth-based telescopes.

A possible application of phase retrieval to electron microscopy lies in the possibility

of indirect phase measurement from magnitude measurement I5. Photographic film

can only record the intensity of the field impinging on it. However, the phase of the

field provides important information on the object being viewed. For example, thin

objects may be considered as modulating the phase of the electron wave while not



affecting the magnitude. The actual phase delay introduced depends on the thickness

and composition of the specimen. Retrieving the phase delays from the recorded field

intensity would yield an indirect way of measuring the specimen properties.

X-ray crystallography is a third realm where reconstruction from Fourier transform

"£ magnitude may prove useful [6]. Physical arguments show that the angles at which the

x-rays are diffracted from a crystal specimen and the intensity of the diffracted wave

at each angle are related to the Fourier transform magnitude of the electron density of

the crystal under study. An important part of crystallography is the task of deducing

the arrangement of atoms in the crystal from knowledge of such diffraction data.
I

The importance of the phase retrieval problem has led several researchers to propose

algorithms for reconstruction from Fourier transform magnitude. However, previously

presented algorithms fall into either of two categories; they are heuristic algorithms

which often do not converge to the true reconstruction, or they are computationally

too expensive for even moderate size signals. The purpose of this thesis is to present
1

a new algorithm for reconstruction of multidimensional discrete signals from Fourier

transform magnitude which is a closed form solution to the problem and which has

*1 been used with success in reconstructing signals of moderate size.

The thesis is divided into eight chapters; Chapter 2 develops an appropriate nota-

- :tion, reviews basic properties of signals and introduces some mathematical concepts.

Chapter 3 is concerned with the review of previous results in reconstruction of both

one- and two-dimensional signals from the Fourier transform magnitude. The formu-

*l | lation of the phase retrieval probiem as a bivariate poiynomiai factorization problem

is given in Chapter 4. Previous aigorithms for factoring polynomials in two variables

,:. .



and their connection and possible application to the phase retrieval problem are also

discussed. Based on this framework, a new algorithm for factoring large polynomials

in two variables is developed in Chapter 5. This leads to a new closed form algorithm

for solving the phase retrieval problem. Examples of the application of the new phase

retrieval algorithm is the subject of Chapter 6. Chapter 7 discusses the application of

- - the ideas developed in this thesis to the areas of general bivariate polynomial factor-

ization and filter stability testing. A summary of the work presented and suggestions

for future research is the subject of Chapter 8.

*"10
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Chapter 2

Notation and Basic Properties

In this chapter we review some concepts from digital signal processing and polyno-

mials in one or several variables. The purpose of this review is primarily to develop a

consistent notation and provide a base for our later development. The interested reader

-" may consult [71 for a more detailed discussion of the signal processing topics described

here. A development of the properties of polynomials reviewed here is contained in [8].

2.1 One- and Two-Dimensional Signals

A one-dimensional discrete signal xzn] or a two-dimensional discrete signal x[m, n]

is a real or complex function of a single integer index n or two integer indices m and n

. respectively. The support of zln' is the set (or sometimes a superset) of all indices n

such that xin is non-zero. The support of x[m, nj is also defined as the set of all index

pairs such that xzm, nj is non-zero.

In our discussion we will find special cases of support to be especially useful. A



signal, either one- or two-dimensional, is said to be of finite extent if its support is

bounded; in one dimension, this means that there is an index pair, (fn, Tnimas) such

that z[n] =0 for n > n..., and n < n~,ft. Similarly in two dimensions a signal is of finite

extent if there is an index quadruple (m,..,, mmn nmez, ninin) such that xfm, n] = 0

whenever any of the four conditions below hold:

M > Mm0 ,z, M < mmin, nl > flmaz, nl < n~njn (2.1)

Pictorially, this means that the non-zero values of x[m, n] can be enclosed in a box,

Figure 2.1.

n

Nmaz

0 0 0 0 0

Nmin0 00

MYm in Alma:

Figure 2. 1: A two-dimensional signal with support [Mm,,,, M.,I X~ [Nin,,, N,., I.

We will denote a region of support consisting of all indices a < n < b as a, b1.

In two dimensions a support comprising all index pairs (in, n) satisfying a < n < b,

c K K dwill be denoted by [a, b] x [c, d!. We will abbreviate [,bx[a, 6 1 by a, b i2.

12



Associated with any signal z~n] is a Laurent series called its z-trnsom

*X(z) = Z znF (2.2)

where z is a complex number. The set of all z where the summation converges is called

* the region of convergence (ROC) of X(z). In this thesis, we will be dealing primarily

with signals of finite extent, in which case the ROC includes all of the complex z-plane

with the possible exclusion of the origin or infinity. Evaluating the z-transform. in (2.2)

on the unit circle Izi I yields the Fourier transform,

X(ej") - [nje-int (2.3)

* . Even if z[n] is real, its Fourier transform may be complex-valued, and can thus be

* represented in terms of its real and imaginary components,

X(ej") -X (eit' +jiX,(eit) (2.4)

or in polar form

X~e- . Xel .e)'e(v)(2.5)

Two-dimensional discrete signals also have a z-transform which is a complex-valued

function of two complex numbers w and z,

X(w, z) = x~zm, njw-mz-n (2.6)

1m n

The defini tion of an ROC also applies to two-dimensional z-transforms. Whenever the

ROC includes the bicircie jwl 1, jzI 1, the Fourier transform of zfm, nj is defined:
|t n

13
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An important signal which is generated from z[nI is its autocorrelation function,

defined via the summation below,

rn] = z zllz'[I + nj (2.8)

It is straightforward to show that if z[n] is a finite extent signal of support [a, b] then

r[n] has support [-(b - a), (b - a)). Note that the autocorrelation function is invariant

to multiplication of z[n] by a constant of unit magnitude or to a translation of xln].

From the convolution theorem 171, the following relationship is derived between

X(z) and the z-transform of r[n], R(z),

R(Z) X(z)X(-) (2.9)

When evaluated on the unit circle, the above equation collapses to a relationship be-

tween the Fourier transforms of x(n] and r[n],

R(eit') - 1X(e ")J2  (2.10)

From (2.10) one can make an important observation that if two signals have the same

autocorrelation function, they must have the same Fourier transform magnitude, and

vice versa.

The autocorrelation function of x[m, nj is similarly defined by

r[m,nl = z[k,]z'[k + m,I + nj (2.11)
k I

The support of rim, nj is given by !-(b - a), (b - a)] x j-(d - c), (d - c)] for zIm, n

with support [a, bj x [c, dI.

3;> 14
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The convolution theorem also applies to the two-dimensional case; the z-transform

of r[m, n], R(w, z), is given by

R(w, z) =X(w,z)x _ (2.12)
w " z

On the unit bicircle, (2.12) becomes

R(eJ", ei') -- IX(eJ",ei)l 2  (2.13)

Thus we see that as in the one-dimensional case, if the Fourier transform magnitude of

a signal is known then its autocorrelation function is known also and vice versa.

2.2 Polynomials in One and Two Variables

In the subsequent discussion, we will be dealing primarily with signals of finite ex-

rtent. In this case, the corresponding z-transforms are essentially polynomials. There-

.. *, .. :. fore, it is important to understand some properties of polynomials which will be used

S|_later on.

A polynomial in one variable z is a function of the form

N

p(z) = pnZ" (2.14)
n0O

where the p,, are complex numbers and N is finite. The degree of a polynomial in one

variable (or one-dimensional polynomials) is the largest power to which the indeter-

inmate variable is raised. The degree of a polynomial p(z) will be denoted by deg(p).

Thus the polynomial p(z) in (2.14) above has degree deg(p) = N

e iAs a result of the Fundamental Theorem of Algebra !81, all one dimensional poly-

nomials of degree N can always be expressed as a product of N polynomials of degree

15
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1 and a constant,
N

p(z) = Rf (z - z-) (2.15)
'3=1

This product representation is unique up to a permutation of the product terms. Since

p(z,,) = 0 for all n, z,, is called a zero of p(z). We note that z, will generally be complex,

even if the p,, set is real.

A polynomial p(z) with deg(p) > 0 is called reducible if it can be expressed as the

product of two polynomials p,(z), p2(z) with deg(p,) > 0 and deg(p 2) > 0, i.e.,

p(z) = p,(z)p 2(z) (2.16)

If no such decomposition is possible, then p(z) is called irreducible. From the decompo-

sition presented in (2.15), we see that the only irreducible polynomials in one variable

are polynomials of degree 1 1. We will see, however, that the situation is quite different

for polynomials in two (or more) variables.

Associated with any polynomial is a "mirror" polynomial consisting of coefficients

" in reversed order and conjugated. For example, for the polynomial p(z) in (2.14), the

mirror polynomial P(z) is defined by

(z) -- p.,.,z" (2.17)
n=0

* I There is a very simple relationship between the zeros of p(z) and P(z); namely, if zo is

a zero of p(z), then z,1- is a zero of P(z).

.Strictly speaking, irreducibility is defined with respect to a specific field. Whether a polynomial is
irreducible or not may depend on the field of interest. However. in our discussion we will only be dealing
with polynomials over the field of complex numbers.

16
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" "One can also study polynomials in two variables, also called two-dimensional poly-

nomials or bivariate polynomials. In this case there are two variabies w, z,J.5
-f N

p(w,Z) = -Pm..w-z° (2.18)
m=O n=O

where again Pro,,n are allowed to be complex numbers. The degree in w, deg,.(p), of

p(w, z) is the highest order to which the indeterminate w is raised. In the example

above, deg,,(p) = M. Similarly, the degree in z of p(w, z), deg:(p), is N. The degree of

S-the polynomial p(w, z) deg(p), is defined by the pair of integers (deg,,(p),deg:(p)); in

this case, deg(p) = (M, N). We will also define the total degree of p(w, z), totdeg(p),

I" as the degree of the univariate polynomial p(w, w). We note that in some areas of

mathematics, e.g., algebraic geometry, the total degree is considered the degree of

A decomposition of an arbitrary bivariate polynomial into a product of polynomials

S-. of a lower degree is not always possible. This is because, unlike the case for one-

dimensional polynomials, there are irreducible polynomials in two variables for any

degree, except of course polynomials which are of degree 0 in one of the variables.

Examplc: The polynomial of degree (M. N) below is easily checked to be irreducible for
Say N > 0 and M>0 [90.

p(w.z)=p+plw+..+plw+z (2.19

If a product decomposition does exist, then it is essentially unique as expressed in

the following theorem '10,

4 I Theorem 2.1 Every polynomial f(w, z) is expressible as the product

P =PP.' Pk (2.20)

17



of a finite number of irreducible polynomial factors P, and every other such expression
for f has factors which are the same except possibly for constant multipliers.

Note that this theorem is equivalent to the Fundamental Theorem of Algebra except

that in this case there is no specification of the degrees of each irreducible factor Pi.

An important representation of a bivariate polynomial p(w, z) is to consider it as a 4.-,

polynomial in w which has coefficients consisting of polynomials in z,

p(w, z) = pO(z) + p1(Z)w +... p.,,(z)W" (2.21)

If deg(p) = (M, N) then the degree of each p.(z) must be less than or equal to N. Of

course, one can similarly consider the same polynomial p(w, z) as a one-dimensional
-P

polynomial in z with coefficients consisting of polynomials in w.

Similarly, (w, z), the "mirror" image of p(w, z), is defined by

P(w, z) .-" -m .Vnw Z" (2.22)
m=O n=O

The zeros of p(w, z) and (w, z) are related via a relationship analogous to the univariate

case; if (w0 , zo) is a zero of p(w, z), then (wo-', z;-) is a zero of P(w, z).

2.3 Z-Transforms of Finite Extent Signals

Recall that a one-dimensional discrete signal x[n] with finite extent support [a, bI

has z-transform,

X(z) = x z[niz -  (2.23)
n i

The expression above can be written equivalently as

X(z) z-6 7 x[b - n]z" (2.24)
n=o)

'-" 18



1% 'The second term can be identified as a polynomial in the variable z with coefficients

p,, =xb - ni. We will call the expression

b-a
p2 (z) x zb - nlzn (2.25)

n=0

the polynomial associated with z[n]. Thus, the two signals z[n] and x[n + k] for any

fixed k have the same associated polynomial. We will assume that the degree of p2(z) is

as small as possible; thus, any associated polynomial of degree n has a0 5 0 and a, # 0.

Formally, we define p,(z) as the polynomial of least degree such that X(z) = zkp 2 (z)

for some integer k.

.- There is a relationship concerning the associated polynomials of zini and r[n], which

is very similar to the convolution theorem relationship of (2.9),

P, (Z) =P(Z)P3,(Z) (2.26)

Z. where we recall that P,(z) is the mirror polynomial of p,(z).

t. We can also define associated polynomials for two-dimensional signals. Consider

the z-transform of a two-dimensional signal z[m, n] of support [a, b] x [c, d],

d-e b-a

X(w, Z) = udz Z_' z[d - m, b -nlw
m zn (2.27)

m=0 n=O

Again, we define the polynomial

d-e b-a

p p(w, z) E E z[d - m, b - n]wz (2.28)
m=O n=O

as the polynomial associated with zim, nI. The corresponding relationship between the

11 polynomial associated with z[m, n] and r[m, nI is given by

-.. .. p,(w, z) = p,(w, z)P. (w, z) 2.29)

:'.. 19
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2.4 The Phase Retrieval Problem

Using the notation presented in this chapter, we can state succinctly what is the

specific problem we are trying to solve. Consider an unknown two-dimensional discrete

signal z[m, ni. The problem is to reconstruct z[m, n] given,

. The support of z[m, n].

e The Fourier transform magnitude, IX(e u, e")I, of z[m, n], at all frequencies 2

This problem can be reformulated in several different ways. From the relationship

of (2.13), we know that knowledge of the Fourier transform magnitude is equivalent to

knowledge of the autocorrelation function of x[m, ni. Thus the phase retrieval problem

can be stated as, reconstruct xjm, n] given,

9 The support of z[m, ni.

* The autocorrelation function, r[m, ni, of zim, n].

The polynomial, p,(w, z) associated with z[m, n] is an almost invertible represen-

tation of a signal, since from the coefficients of p,(w,z) we can restore, to a linear

* shift, the original signal. We will find that this shift ambiguity is inherent in phase

retrieval. Using associated polynomials, the phase retrieval problem can be considered

as reconstructing p,(w, z) given,

* the degree of p,(w, z).

S 21t can he shown that for finite extent signals it is only required that the Fourier transform magnitude
he known on a sufficiently dense sampling grid which depends on the known support constraint. We will

not consider this aspect of the problem. For a discussion of this question, see 191. In the case where the

'antrrorrlation function is known directly, then the support of xrm. n] can be estimated.

20
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. the associated witn the autocorrelation function, Pr(W, Z).

In considering the phase retrieval problem we will make use of all three formulations.

S

.9

I

N
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Chapter 3

Previous Results in the Phase
Retrieval Problem

The earliest results on reconstruction from Fourier transform magnitude for sig-

hl nals with given support relate to the one-dimensional case. These results are reviewed

S.: in this chapter, both because they provide some insight into the general problem of

- -. phase retrieval and also because solving one-dimensional problems turns out to be an

integral part of several proposed algorithms for two-dimensional phase retrieval.

- -The second part of this chapter discusses the two-dimensional problem. A review of

l Ithe known results on the uniqueness and characterization of the solution is presented

followed by a review and critique of several algorithms which have been proposed for

reconstruction of images from the Fourier transform magnitude.

3.1 Reconstruction of One-Dimensional Signals from
Known Support and Magnitude

The earliest reference to the orie-dimensional case seems to be a paper by

Akutowicz !11' which provided a complete characterization of the problem of one-

dinviensional continuous reconstruction from Fourier transform magnitude. This rela-
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tionship was rediscovered simultaneously by Walther [121 and Hofstetter [131.

While Akutowicz, Walther and Hofstetter considered the reconstruction of a con-

tinuous one-dimensional signal from its Fourier transform magnitude, more recently

Hayes [91 has considered the discrete one-dimensional case. The situation of a discrete

one-dimensional signal can be derived in a manner similar to the argument followed

by Akutowicz, Walther and Hofstetter. His development is given here while stressing

some points which will become important in our later discussion.

In the section below, we discuss virtually simultaneously the problems of character-

izing the number of solutions to the one-dimensional phase retrieval problem and an

algorithm for producing such a reconstruction. This is in contrast with our discussion of

the two-dimensional phase retrieval problem later in this chapter, where reconstruction

algorithms are developed at a distance from uniqueness considerations.

The object of the algorithm is to find all signals of extent 10, NJ which have the

Fourier transform magnitude IX(e")j. From (2.10) we know that we can immediately

calculate the autocorrelation function of any such signal via,

F-{IX(e")12} = r[nJ (3.1)

pr Since the autocorrelation function of an N + 1 point signal has support [-N, N the

z-transform of rt[n[ becomes

R (z) = rjn~z-n (3.2)

The polynomial associated with r[nj is

2N

p,(z) = rIN - njz" (3.3)
n=O

23



The next step is to develop the product decomposition of p,(z). Since r[n] =r[-n],

p, (z) is its own mirror polynomial. Thus if p,(zo) = 0, then p,(z - ') = 0 also. Further-

more, since the Fourier transform of r[n] is non-negative, the zeros z0 and z - ' will be

distinct, or occur in even multiplicities. Therefore, p,(z) can be expressed as

aN

p,(z) = A fl(z- z,)(1 - zz) (3.4)

where A is positive. Now suppose that z[nj with associated polynomial p,(z) is one

solution, i.e., xzn] has rjnI as an autocorreiation function. Recall that

Pr(Z) = P2 (Z),(Z) (3.5)

The object of the discussion below is to generate a p,(z) that satisfies (3.5). From

- the set of zeros in (3.4), one zero is picked from each pair (zi, z*-') and a polynomialW0
with such zeros is generated but with an unknown scale constant a,

p,(z) = flI(z - Z,) 11(1 - zzO (3.6)
t 'EI j

where I is a subset of I1 N'. The mirror polynomial of p,(z) is P2 (z) and has product

decomposition given by

- 1(,- zzl] f(z - zi) (3-7)
iEl P91

Now the product of p,(z) and p1 (z) will equal p,(z) if Ja= A. Thus, a can be picked

to be any complex number such that o v/A.

From the procedure above, a polynomiai associated with a possible solution signal

has been constructed. Consider two different polynomials which have been constructed

using the algorithm above. They will have some zeros in common and some zeros

- 24



which are "flipped" pairs. Thus, one can generate alternate polynomials from a single

construction by "zero-flipping".

At this moment we should review the process of generating the associated poly-

nomial of a solution to the phase retrieval problem. The first step is to extract the

autocorrelation function from the Fourier transform magnitude information. From this

signal, its associated polynomial is extracted. The zeros of this polynomial are calcu-

lated and these zeros occur in N pairs. From each of these N pairs one member is

chosen and thus determine the zeros of the solution associated polynomial. Since one

*'-:- can pick either member from each pair, a total of 21 possible zero sets, and corre-

sponding polynomials can be constructed. The final step is to find an appropriate scale

constant for the solution associated polynomial. This scale constant has a prescribed

magnitude but arbitrary phase.

If the desired solution must be real then zeros chosen for a solution associated

polynomial must include complex conjugate pairs, thereby decreasing the number of

solutions from 2- possibly down to 2N/2 if all zeros are complex. The scale constant

is also restricted to being real, so only a sign ambiguity instead of a phase ambiguity

remains.

Once the appropriate associated polynomial has been specified we can label as a

solution any signal which is associated with that polynomial. For example, if the

extracted polynomial is given by

P, (Z) = z (3.8)
n=0
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then a possible solution is

x z[n=a.v, for0<_n <N"'- -(3.9)

" 0 elsewhere

In fact any signal of the form

x[n + kj= a..,,_ for 0 < n < N
(3.10)

=0 elsewhere

for any integer k is a valid solution.

Although the algorithm presented in the previous discussion is rather simple and at

first sight does not seem to deserve the painstaking attention which has been directed

to it, we will find that the two-dimensional problem can be attacked in much the same

way; the only difference, and unfortunately it is a big difference, is that extracting

U. the appropriate zeros of the polynomial associated with a solution will be much more

involved.

3.2 Reconstruction of Two-Dimensional Signals from
Known Support and Magnitude

"-= . -?.

3.2.1 Theoretical Results

Although the one-dimensional reconstruction from Fourier transform magnitude

given a finite support has been completely solved, the two-dimensional problem has

proven to be both more challenging and more interesting. The key to characterizing

S-i the general reconstruction from Fourier transform magnitude problem is to note how the

multiplicity of solutions in the one-dimensional problem is introduced. This multiplicity
.

depends on the ability to decompose the polynomial associated with a solution into a
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product of lower order polynomials, in fact, polynomials of degree 1. It is this property

that allows for the "zero-flipping" described above, resulting in several solutions. We

will discuss the fact that most two-dimensional signals do not allow such zero-flipping;

hence, the solution to the phase retrieval problem becomes essentially unique.

The original insight on the relationship between factorability of the z-transform and

uniqueness of the Fourier transform magnitude reconstruction was presented by Bruck

and Sodin [1J, and later formalized by Hayes [2).

Consider a known Fourier transform magnitude IX(eiu,ei")I. We want to find a

signal x[m, n] of support [0, M] x [0, NJ with the given Fourier transform magnitude.

From the Fourier transform magnitude we can calculate the autocorrelation function

* . r[m, n] which must have support I-M, MI x I-N, N). The polynomial associated with

rim, n) must be of the form,

"P, ("W, pwZ) = p(w) (W, Z) (3.11)

Thus, p,(w, z) must satisfy two conditions: first, it must be a polynomial factorable into

two smaller polynomials of degree (M, N) each. Second, each of the factors must be
F.-.~

mirror polynomials of each other. Any factorization of p,(w, z) which satisfies these two

conditions corresponds to a valid signal z[m, n] which satisfies the original information.

An important question is whether there is only one factorization. To answer this

question it is necessary to look at the factorability of p,(w, z) itself. Following Hayes

"91 define the following equivalence class,
p. %

yim, n] z[m,n] if y[m,n] = eJz[k, m, k, n] (3.12)

for some integer pair (ki, k2) and some 0. Thus, y[m, n] and x[m, nj are equivalent if
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they are related by a linear shift, a phase change, and/or a rotation by 180 degrees.

From the properties of associated polynomials, we see that z[m, n] -. y[m, n] is the

same as stating that pu(w,z) = exp(jO)p,(w,z) or p,(w,z) = exp(j0)P,(w,z). Using

this definition, we can state a uniqueness theorem for reconstruction from Fourier

transform magnitude,

Theorem 3.1 If z[m, nj has an irreducible associated polynomial, then all other y(m, nJ
which have the same Fourier transform magnitude must be equivalent to x[m, n].

..

. .....

The complete proof of this statement is given in [9] for the case of real x[m, n]. The

,  case for complex z[m, n] can be shown in a similar manner.

It has been shown that factorable polynomials form a zero-measure set in the space

of two-dimensional signals 114). A subsequent contribution by Sanz et al. 115] showed

that not only do signals with a factorable z-transform form a zero-measure set, but they

also form a non-dense set in the space of two-dimensional signals. From these results we

can conclude that most two-dimensional signals have an associated polynomial p,(w, z)

which is irreducible. Moreover, the polynomial remains irreducible if the signal is

.WI perturbed by a small amount.

Several comments are in order regarding Theorem 3.1. We want to note first of

all that a finite extent constraint must be placed on yrm, n), i.e., in the Hayes (and

Bruck and Sodin) proof, it is implicitly assumed that ym, n] is a finite extent signal.

Otherwise, "infinite order polynomials" do not satisfy a unique factorization property

of Theorem 2.1. This observation implies that some knowledge of the support of the

signal is needed in order to assure a well-behaved uniqueness result. For example, if

28U
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the support of z[m, nJ is [0, 3]2, there may be only essentially one signal of finite extent

with the same Fourier transform magnitude as z[m, n] but there may be many signals

of extent [0,1002 with almost the same Fourier transform magnitude as z[m, n].

Under some conditions, it may be possible to specify the z[m, nj with a given Fourier

transform magnitude to a greater extent than just the fact that it is a member of

the equivalence class defined above. For example, if the signal is composed of image

intensities, then the sign ambiguity disappears. Also, if the support of the signal is

known to be such that it is not invariant to a 180 degree rotation, for example a

triangular support, then the rotation ambiguity is removed. However, if the support is4
symmetric, for example, square, or only bounded by a symmetric region, then we cannot

distinguish between the original image and the image reversed. This ambiguity is all

that is left of the multiplicity of solutions which was observed in the one-dimensional

case that was due to the "zero-flipping"; either no zeros are flipped, or they all are.

The linear shift ambiguity itself is seldom of importance.

The continuous two-dimensional case has only been studied in depth recently. An

early discussion is due to Huiser and Van Toorn [161 who first studied the question.

More recently, Sanz et al. [17] showed that the non-uniqueness of the case studied

by Huiser was due strictly to the fact that the Laplace transform Huiser considers is

factorable, and in fact showed that multidimensional continuous signals with Laplace

transforms which are non-factorable entire functions can be uniquely reconstructed

from the magnitude of the Fourier transform.

29°
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3.2.2 Study of Previous Algorithms for Phase Retrieval

Fienup Algorithm

The development of algorithms for reconstruction of two-dimensional signals from

Fourier transform magnitude preceded the establishment of conditions for uniqueness.

The earliest family of algorithms were of an iterative nature, pioneered by Fienup

'18, 19'. These algorithms are based on work by Gerchberg and Saxton [20], and since

the introduction by Fienup have been studied by Hayes [2], Sanz and Huang [21], Levi

'-" -and Stark [221, and Won et al. [231, among others. In this section we describe and study

three versions introduced by Fienup. The simplest algorithm is the Gerchberg-Saxton-

Fienup (GSF) algorithm which iteratively imposes the known support in the spatial

domain and the known Fourier transform magnitude in the frequency domain. The

" second algorithm considered is the Gerchberg-Saxton-Fienup algorithm with positivity

constraint (GSF-P) which forces each estimate to be non-negative as well as of the given

- 1 support. Although positivity is not a requirement for uniqueness of reconstruction, it is

hoped that using such additional information will aid in speed of convergence. The final

algorithm considered is the hybrid input-output (HIO) algorithm developed by Fienup

which is described below. The object of this section is to describe these algorithms and

evaluate their performance.

• The algorithms begin with an initial estimate which can be derived either from a

priori knowledge of the signal, i.e., a low resolution image, or in the case of no other a

".-- <' priori knowledge, from an image with either a random phase component which satisfies

the Fourier transform magnitude constraint, or from an image with random coefficients

.1o .
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which satisfies the support constraint. In our discussion, we take the last approach.

Given an estimate zi[m, n] of z[m, n] which satisfies the support constraints, an

auxiliary signal 1;[m, n] is calculated by the three algorithms, where 5im, n] has the

correct Fourier transform magnitude and the same phase as zi(m, n],

ij [m, n] F-{I IIX(el", ev) Ieirg(X(el".0))} I (m., n) (3.13)

where X,(eij, eit) is the Fourier transform of zi[m, n]. However, in general, i,[m, n] will

not satisfy the known support and/or positivity constraints. The difference between

- . the three algorithms is how the next estimate z,+1fm, ni is calculated from i,[m, n] and

For GSF, xj+1 [m, nl is calculated as,

xj=+i [,m, nj = *~,n (,n (3.14)

0 elsewhere

where the S denotes all index pairs where z[m, n] is allowed to be non-zero. In the

GSF-P algorithm, x,+,(m,nl is derived from,

imni (in, n) ES and ;i~m nj 0
z, 1 [m, n, = (3.15)

0 elsewhere

Finally, HIO uses both the previous estimate z,[m, nj and z,[m, ni,

ii=m, nj (m, n) E S and i,[m,n 0 (316...: :.;.:. ", M : r n. ' (3.16)

.- m n!l - zim, n elsewhere

From this estimate, x,+1Jm, n), the iteration is repeated. We note that impiementa-

-. .tion requirements dictate that the algorithm use a sampled Fourier transform. Moreover

in order to be abie tc impose a support constraint, we need to ovorsampie the Fourier
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transform magnitude. In our examples, if the support is enclosed in an N by N "box"

p Iwe use a 2N by 2N discrete Fourier transform of the appropriately zero-padded image.

There is considerable disagreement between researchers in the field considering the

conditions under which these iterative algorithms converge to the correct reconstruc-

tion. It can be shown [11 that the GSF algorithm decreases at each iteration the mean

squared error between the estimate and true Fourier transform magnitude. Thus, the

algorithm must converge to a fixed point of the iteration. This convergence does not

imply, however, that the error will decrease to zero.

Fienup [18,19J has reported on the wide applicability of the iterative algorithms,

especially the HIO algorithm. On the other hand, Hayes [2] has found that the GSF

algorithm was not successful in reconstructing several original images. In a response,

Fienup [241 has noted that the positivity constraint, which is used in the GSF-P and

HIO algorithms, is important in ensuring convergence to the original image. However,

Sanz et. al [211 has produced an example where the GSF-P algorithm did not converge

to the original image even though the algorithm makes use of the positivity constraint.

In Appendix A we present a study of the convergence properties of the algorithms

described above. A Monte Carlo study was performed on a large number of randomly

generated 4 by 4 and 8 by 8 images to assess the convergence rate of each algorithm

presented. The results of this study are summarized in Tables 3.1 and 3.2. These tables

"present the percent of trials w~ic converged to a solution which had a normalized mean

squared error (defined in Appendix A) of either less than 10-2 or less than 10'.
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Success rate of convergence (percent)
support type rectangular triangular

cutoff 10-2 10- 4 10- 2 10- 4

GSF 21 9 59 53
GSF-P 22 12 60 55
HIO 22 12 60 52

Table 3.1: Summary of algorithm convergence as a function of support and criterion
for 4 by 4 image.

Success rate of convergence (percent)
support type rectangular triangular
cutoff 10- 2 10- 4 10- 2 10- 4

GSF 0 0 44 40
GSF-P 0 0 54 50
'IO 0 0 54 48

Table 3.2: Summary of algorithm convergence as a function of support and criterion
for 8 by 8 image.

From Tables 3.1 and 3.2 we see that the iterative algorithms perform substantially

different for the case of symmetric and non-symmetric supports. For the case of a

non-symmetric support, the success rate was on the order of 40 to 60 percent while for

symmetric supports, the algorithms succeeded in at most 20 percent of the trials. The

reason for this difference may be that for non-symmetric supports, there is no rotation

ambiguity in the reconstruction, i.e., one cannot rotate the image by 180 degrees and

be able to "fit" the image in the same support. Moreover, while the convergence rate

for the non-symmetric support remained about the same as the image size increased,

--..-. the iterative algorithms degraded dramatically for 8 by 8 square images compared to

4 by 4 square images.

We must make the final observation that although there was a difference in the con-

vergence rate among the three algorithms, the success rate among the three algorithms,

:-.. as defined in Tables 3.1 and 3.2 is about the same; that is, the frequency with which
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the application of any of the algorithms considered resulted in a good reconstruction

of the original image was about the same.

There are several conclusions we can derive from the study presented above. For

- .the family of symmetric signals considered, we can surmise that the algorithms consid-

ered converged to the correct reconstruction in at most 20 percent, depending on the

reconstructed image fidelity cutoff used and the image size. As the image size increased

the success rate decreased. In the case where a nonsymmetric region of support was

known, the iterative algorithm performed substantially better, achieving a final esti-

* mate close to the true signal in about 50 to 60 percent of the trials, the success rate

staying constant as the image size was increased. The use of positivity information did

not aid the convergence rate substantially.

Bates Algorithm

Bates [25,26,27] has developed an algorithm for the two-dimensional reconstruction

...* which tries to estimate the phase of the Fourier transform directly from samples of the_

" . Fourier transform magnitude. For simpiicity, consider a two-dimensional signal z[m, nj

which has a region of support A0, N'. Consider the samples of the Fourier transform

at frequencies u = 21rk/(N + 1), v = 27rl/(N + 1),

:"~~~ "2,, e 1" "
, X e'.X(,e ', ) (3.17)

Since X(ej", e'") is the Fourier transform of an [0, N 2 signal, it must satisfy the fol-

lowing "interpolation' formula,
-,

S21rk 21,2.. X(e"', el") e;-.''  Xkt sirnc( v)
- .... k=o0 -,,
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where

sinc(z) = 2 (3.19)
sin W2)

• Note that for u = 21rk/(N + 1), or v = 21rl/(N + 1), (3.18) can be simplified to

X(eiu, ei211/(N+1)) -=i j+fu2,tft2/(N~a L) . 1 ic.- )(.02J" ~ Xk,j "ic 2vk uEk=O- i -- u) (3.20)

Xje2 rk~j+I), eit) E 0 Xkjl sinc(-2"'1  v)

(e -iv N+I~l(+ +

The basic assumption in the Bates algorithm is that the sidelobes of the sinc( in

(3.19) function can be ignored. Using this assumption, (3.20) is approximated for

"in-between" samples Xk+II or Xk,+± by

2 N, k+1+1 2

Xk+.NI (6X+.,. + 6 X.+nI")L (3.21)

Xk,+ -- e €'2r.... + (bX .,. + bX.,.+,)-2
where 6 is a constant which is "tuned" to the specific signal.

The algorithm proceeds in a sequential manner. Let us suppose that we already

know the phase of Xk.g and want to find the phase of Xk+.. By assumption, we know

the magnitude of all the terms in (3.21), therefore, we can use the "law of cosines" to

find the cosine of the difference in phase between Xk., and Xk+l.l,

-7 lXk+ ,112 _ 1IXk+l.,12 + 611xk,.12
cos(arg{Xk+,.} - arg{Xk,}) m 2 IX+. 2  (3.22)

21 XkIjjXk+l .11

Similarly we can find a formula for Xk.,+l.

cos(arg{Xk,+, ) - arg{Xk.,}) A 2.+ t .{ .+ (3.23)

2 1Xk., XkJ+l

Note that (3.22) does not specify the phase of Xk+1 .t uniquely; there are actually two

phase differences (negative of each other) which satisfy (3.22).
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The algorithm begins by setting the phase of X0,0 to zero. As Bates points out,

this is not a restriction to the algorithm since all signals which differ by a constant

phase have the same Fourier transform magnitude. The algorithm then proceeds to

calculate the two possible approximations to the phase of X. 0 via (3.22). One of these

phase approximations is picked arbitrarily. Again this is not really a restriction since

the only effect is to possibly rotate the resulting reconstruction by 180 degrees. The

two possible values for the phase of Xo.1 are then calculated via (3.23). At this point

" "both estimates for the phase of X0.1 must be kept since all the degrees of freedom have

been used in setting the phase of X. 0 and X1.0 . The algorithm then proceeds by using

both possible values for the phase of X0. and (3.22) to calculate four possible values

for the phase of Xj.1 '

g At this point the phase of X0.0 and X0.1 is known approximately, there are two

possible phase values for X1.0 and four possible phase values for X.l. The next step is

to remove the ambiguity in the phase of X1 .1 by re-calculating the phase of X , ., in an

independent manner, namely via the knowledge of the phase of X1 .0. Since the phase

*i of X,., has bec.- uniquely specified, we can use (3.22) to calculate only two possible

values of the phase of X,.,. Bates maintains that the two sets of possible values for the

phase of X,.1 derived via the two different paths

SX 0.0 --* X1 .0 -- X. (3.24)

and

X 0.0  X0.1 X.1 (3.25)

will, in general, have only one value in common, or more precisely only one pair which
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almost matches. Using this value, the phase of X,1 is thus uniquely specified. Tracing

our steps back, we can then get a unique phase estimate for X0,1 . The algorithm then

proceeds to calculate other values of phase by working sequentially away from Xo.o.

Obviously, this algorithm makes many assumptions which make it a questionable 5
solution to the phase retrieval problem although the authors have had some success in

imlementation 126,271. First of all, the whole algorithm is predicated on the linear

assumption made in (3.20); this is rarely valid. Second, as the authors suggest, this

assumption will cause the two sets of phase values for Xj, not to have ary points in

common, necessitating the use of a "closest" criterion. As soon as one error is made

in choosing a phase value, all later phase estimates will be incorrect. Even if no error

is made in choosing the "closest" match, higher frequency phase estimates will be

increasingly poor.

Because the phase corresponding to higher frequency terms get progressively poorer,

we expect that the algorithm would be able to extract with some accuracy the lower

frequency content of the image. In fact, this is the observed phenomenon; the recon-

struction seems to be a severely blurred version of the original [23]. More recently, some

effort has been made in using the Bates algorithm to generate an initial estimate for

the Fienup algorithm. For the case where the image has mostly low frequency content,

the Bates algorithm gives an adequate initial estimate for the Fienup algorithm [281.

Canterakis Algorithm

Recently, a third algorithm has been proposed by Canterakis 129). This algorithm

. .... differs from the algorithms presented so far in that it is guaranteed to yield an exact
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solution to the phase retrieval problem. The aigorithm can be described as a conver-

sion of the two-dimensional reconstruction problem to a one-dimensional reconstruction

problem. Thus, it is important to keep in mind the discussion of Section 3.1 in evalu-

ating this algorithm. For simplicity, suppose that the support of the unknown signal

0 m, n is N, . Consider now the one-dimensional signal i[nj given by

" -m + (2N + 1)n= x[m,nj for0 < m, n < N (3.26)

0 elsewhere (3.27)

- This can be viewed as attaching N zeros to each row of z[m, n] and concatenating the

rows. It is easily shown that [nj, the autocorrelation function of i[n], satisfies

.[m + (2N + 1)n] = r[m, ni (3.28)

where r'm, n] is the autocorrelation function of x[m, n]. Note moreover that (3.28) is a

reversible transformation; '[n] is generated from r[m, n] by concatenating the rows of

-, r m, n . The Canterakis algorithm consists of first calculating r[m, n from the known

-. Fourier transform magnitude via the relationship of (2.13). Then rn is formed and

- all solutions to the one-dimensional reconstruction problem are calculated. Since i[n

is an 2N " -j- 2N -4- 1 point signai, there are about 2. 2 solutions to the one-dimensional

problem posed, taking into account the fact that jn' is assumed to be real. Each

candidate 'n is tuen checked to see if it can - rrespond to a zxm. n'; namely, whether it

consists of the alternation of non-zero and zero samples consistent with a "transformed"

*n two-dimensional signal. For each successful i[n, the corresponding z[m, n is formed,

-- . resulting in a solution to the two-dimensional reconstruction problem.
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MC .T- - - - -

It is clear, as the author pointed out, that this algorithm requires exponentially in-

creasing computations as the signal size increases. Because there are on the order of 2"12

solutions to the associated one-dimensional problem, the computational load increases

-. rapidly as N increases. Clearly this algorithm cannot begin to be applied to signals of

reasonable size. We should note, however, that the Canterakis algorithm does provide

an interesting perspective on reconstruction from magnitude. One point is that the

phase retrieval problem is posed as that of extracting zxm, n] from its autocorrelation

function instead of extracting x[m, n] from the Fourier transform magnitude directly.

The second interesting point is that the Canterakis method, as we will see later, is

an implicit attempt at factoring the polynomial associated with the autocorrelation

function of z[m, n]. This is, in fact, the specific approach we will pursue in Chapters 4

and 5.

Deighton, Scivier and Fiddy Algorithm

Recently Deighton, Scivier and Fiddy (30] have developed an algorithm reminis-

cent of the Bates algorithm. This algorithm however does not make any approxima-
w

tions, and therefore, like the Canterakis algorithm, yields an exact reconstruction.

Suppose that, as in the discussion of the Bates algorithm, one seeks to calculate the

phase difference between the Fourier transform samples Xk., and Xk+l.I. Let z'fn] be

defined by

N
[n= [mnje' (3.29)

m=0

where again, zim, nj has support [0, N]2 , and let the Fourier transform of xjfnJ be
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- denoted by XI(ej"). Using xzjnj above, we can express Xk., and Xk+l,, as

* Xk. = X,(e*,) (3.30)

Xk+I.I Xg(e 'A' (3.31)

Thus the Fourier transform of zt[n] is the strip in the (u, v) plane along v =

(2-1 I)i(N - 1). Since X(eiu , ei") is known for all (u, v), the Fourier transform mag-

nitude of xjn is also known for all frequencies. The signal x1[n] has support [0, Nj

- - . and the results on solving the one-dimensional phase retrieval problem can be used to

" - generate a set of at most 2- signals of which one must be z1nI. By calculating the

Fourier transform phase of each of these possible signals, the possible phase difference

between Xk.l and Xk+.1 is thus restricted to be one of at most 2-" different possibilities.

From the same process, 2-' different possible values for the phase difference between

Xk.1-1 and Xk+i.1+1 can be generated. Combining the two results above, we have 2 2.

possible phase differences between Xk., and Xk+l.1+I. By using the Xk. -, Xk.,+ -*X,.

path, we get another 22.\ possible phase differences. Comparing the two lists, we expect

that only two phases will be in both lists, the true phase and the phase of the reversed

w image. Although no proof has been presented, experimentally it has been found that

only those two phase values will be in common in both lists.

The Deighton algorithm proceeds as follows: first, the phase of X 0.0 is arbitrarily set

t zero. Via the phase matching process 'ust described the phase of X(.1 , X1 .0 and X1.1

are calculated. Moreover, the phase of X).k, XI.k and Xk.1 can be calculated for all k.

Suppose that the phase of Xk. 2 is now desired for k > 2. Using the same procedure, all

2x solutions for zx'n' are calculated. The one solution which agrees with the previously
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XIJ. 0 -x 1.0

Figure 3.1: Phase differences to be used in Deighton algorithm.

calculated phase difference between XO,2 and X1 .2 is then used to calculate the phase

*Of Xk.2 for all other values of k. This way, the rest of the phase values of Xk., can be

calculated.

The most computationally demanding part of the Deighton algorithm is the ini-

tial matching of phases. Figure 3.1 displays the number of possible phase differences

among the four Fourier components X0.0 , Xo,1, X1.o and X1 ,1 The characterization

of the number of phase calculations needed turns out to involve a tradeoff between

computation and storage. Consider first trying to find a match for the phase difference

between X,.0 and X,., in the manner just discussed. Then, the algorithm needs to

-. Vcompare two lists with 2-v-'-'. elements each. Thus the lists grow at a rate of about

')3N./2 Such a list becomes too large to be accommodated in main memory (6 Mbytes of
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available memory) for images larger than 12 by 12. Since we will be dealing with larger

images, it is imperative that the memory requirements of the Deighton algorithm be

reduced for comparison purposes. This can be done by finding a match for the phase

difference between X. 0 and X 0,1 instead of Xo.O and Xjj. This allows us to use a list

of size approximately 22L' /2J so we could consider images of size up to about 18 x 18.

This storage reduction comes at a price however, since now the number of comparisons

required is about 2 -X" instead of 2 3N/2

To the author's knowledge, of all the algorithms so far published for phase retrieval

which is guaranteed to yield the correct solution, the Deighton algorithm is the most

computationally efficient. In order to be able to compare the performance of our

algorithm with the Deighton algorithm, the Deighton algorithm was implemented using

the second method described here. In Figure 3.2 we show the number of CPU seconds

on a Vax-750 required to reconstruct an image with support [0, N - 1]2 as a function

of N.

- The severe storage or computational requirements of Deighton algorithm, especially

its quick growth with image size, is directly related to the combinational approach used

of trying all possible solutions. Since the resources required grow exponentially, one

quickly runs into a storage or computational barrier.

42



CPU seconds
1000

10000,

8000

6000

4000

2000

68 -012 lmg.iz

Figure 3.2: Time required for reconstruction of an N by N image as a function of N
- for Deighton algorithm.
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Chapter 4

Phase Retrieval via Bivariate

Polynomial Factorization

We have so far discussed several approaches to reconstruction from Fourier trans-

form magnitude. The algorithms of Fienup and Bates are computationally efficient and

ea s i applied. However, there is no assurance that using these algorithms will yield a

solution to the phase retrieval problem. We have also considered two algorithms which

pro)vide a closed form solution to the reconstruction problem. The first algorithm stud-

el... dev-eloped by Canterakis, rapidly becomes prohibitively expensive as the image

size is increased, or equivalently, as the image resolution is increased. The second

closed form algorithm, studied by Deighton et al., is more attractive computationally.

0 However, the required computational and storage load also increase very rapidly as a

function of image resolution.

As described in the last chapter, the results of Bruck and Sodin, Hayes, and Sanz

point to the intinnate relationship between conditions for uniqueness of reconstruction

fromi Fnurier transform magnitude and the factorability of polynomials. Moreover, we

* found that a general procedure for solving the one-dimensional phase retrieval problem

consists of factoring the polynomial associated with the autocorrelation function. The
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approach we introduce in this chapter in order to generate a new algorithm for phase

retrieval is to view the relationship between phase retrieval and polynomial factorization

as also pointing to a method for solving the two-dimensional phase retrieval problem.

We will also find that this approach, although explicitly expressed here, is the implicit

basis for the Canterakis algorithm described earlier.

If the coefficients of the unknown signal are known to be rational numbers, then the

theory of integer polynomial factorization becomes applicable. This is the approach

considered by Berenyi, Deighton, and Fiddy [31]. There are several difficulties with

the rational coefficient assumption. First of all, an infinitesimal amount of noise will

render the algorithm useless. Second of all, algorithms for factoring polynomials are

very computationally intensive. In Berenyi's paper, the largest image considered was

a 6 by 6 image.

One novel idea of this thesis is to consider algorithms for factoring polynomials

over the reals or complex numbers. This makes the problem more robust to noise and

also applicable to the case where the signal to be reconstructed has complex values.

The final result, described in the next chapter, is a new factorization algorithm which

leads to a closed form solution to the phase retrieval problem which is much more

computationally efficient than the Canterakis or Deighton algorithms. As a result, the

reconstruction of images of sizes up to 25 by 25 becomes feasible.

In this chapter we first pose the two-dimensional phase retrieval problem in anal-

ogy to our previous one-dimensional presentation of Section 3.1 and emphasize how

factorization of the resulting bivariate polynomial leads to a solution of the phase re-

trieval problem. This leads to the topic of this chapter, which is the discussion of
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several known algorithms for factoring polynomials in two variables over the complex

numbers. In order to do this we first introduce some results from algebraic function

theory. We follow this by a discussion of the algorithms of Kronecker and Kaltofen for

factoring bivariate polynomials. In the next chapter we introduce the main result of

this thesis, which is a new algorithm for factoring polynomials in two variables over

the reals or complex numbers and its application to the phase retrieval probiem.

4.1 Phase Retrieval as Polynomial Factorization

We have already found that the polynomial associated with the autocorrelation

function is always factorable into the product of p,(w,z), the polynomial associated

with the unknown image z[m, n] and the mirror polynomial P,(w, z),

Dp, w, Z) .P(w, Z)z(w, Z) (4.1)

Moreover, if p,(w, z) is not factorable, then (w,z) is not factorable either, and thus

(4.1) is the only non-trivial product decomposition of p,(w, z). Thus, if p,(w, z) is not

factorable, we can generate zxm, n! from rrm, nj by factoring p,(w, z) into its irreducible

components. This observation is the basis for the result by Bruck and Sodin, and Hayes.

From (4.1) we see the possible utility of algorithms for factoring bivariate polynomials;

namely, if we can factor p,(w,z) then we will retrieve p,(w,z) or ,(w,z), and from
O "

p,,w, z) or ,(w, z) we can extract zxm. nI or zf-m, -nl.

m*4
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4.2 Zeros of Bivariate Polynomials

4.2.1 Motivation

In the search for factorization mechanisms for polynomials over the complex num-

bers, zeros of such polynomials play a crucial role. The importance of zeros is essentially

due to the property that the set of zeros of a polynomial is equal to the union of the

set of zeros of its factors. For example, the set of zeros z, of a univariate polynomial

is equal to the union of the zeros of each of its irreducible factors, namely each factor

(z - z,). The same situation holds for polynomials in two or more variables. Unlike

univariate polynomials, however, the zeros of polynomials in two variables cannot be

- broken up into independent pieces consisting of an isolated zero each. If the polynomial

*: is reducible, its set of zeros can be broken up into a union of zeros corresponding to its

irreducible factors. The main difficulty is that performing such a dissection is a much

more intricate matter in the bivariate case than the univariate case. For this reason

the discussion below is concerned with developing some of the properties of zeros of

V ., polynomials in two variables.9.be
-. 4.2.2 Algebraic Functions

" - We already discussed that there are complex numbers zi associated with a polyno-

mial p(z), called the zeros of p(z), such that p(zi) = 0. We also noted that the number

of such zeros is finite. In fact, there are at most deg(p) zeros of p(z).

AN Bivariate polynomials have a much more interesting set of zeros. In fact a large

' branch of mathematics is concerned with the study of the zeros of polynomials in two
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variabies. A very readable discussion of this topic is contained in 110]. Most of the

m development below is based on this reference. In order not to stray too far from our

main subject, some of the relevant results are rederived here in a restricted yet adequate

form, but without the necessity of introducing certain peripheral subjects.

Recall that a zero of the polynomial of degree (M, N)

.I N

p(w, z) = a n m... w'z (4.2)
m=O n=O

- is a pair of complex numbers (wi, zi) such that p(wi, zi) = 0. However, unlike the one-

dimensional case, the number of such zeros is not finite. In fact, as shown below, for

kany complex number z we can always find a w such that (w, z) is a zero of p(w, z).

Consider p(w, z) written as a polynomial in w with coefficients which are polyno-

mials in z,

p(wZ Z= pO(z) + p1(z)w +.. + p.f(z)U" (4.3)

where
N

IJp,(Z) = P.kzk (4.4)
k=O

For each value of z, the equation p(w, z) = 0 defines a function w(z) implicitly by

p(w(z),z) =0 (4.5)

This function is called an algebraic function because for all z, w(z) satisfies the algebraic

or polynomial equation (4.5). This function w(z) will be multi-valued; specifically, it

will normally consist of the M distinct finite roots of (4.3)

WIC(), W2 (), , W.,,(Z) (4.6)

These are called the branches of the algebraic function.
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It is straightforward to generate these roots; namely, each pi(z) in (4.3) is evaluated

at z, reducing (4.3) to a polynomial in w with numerical coefficients. The roots of this

one-dimensional polynomial is exactly what we mean by (4.6).

A point z = a in the complex z-plane where there are M distinct finite zeros of

p(w, a), i.e., where all the branches of w(z) are finite and do not intersect, is called

an ordinary point of the algebraic function w(z). A point where one of the branches

becomes infinite or two branches coalesce into a single root is called a singular point.

Therefore, each point in the z-plane is either an ordinary or singular point of w(z).

The case where two branches coalesce into a single root is also called a branch point.

Thus, a branch point is a special case of a singular point. Singular points which occur

for finite values of z will be called finite singular points.

Ezample: Consider the polynomial.

p(w.z) = - z + z 2 + (-I + z- z 2)w + (I- z)w 2  (4.7)

A plot of w(z) as a function of z between .5 and 1.5 is shown 'an Figure 4.1. In this case there
are two branches since the degree of p(w.z) in w is 2. Thus for almost all z. there are two
values of w such that p(w. z) = 0. One singular point of w(z) occurs at z = 1. where it can
be seen from the figure that one branch becomes infinite at this value of z. A branch point of
w(z) occurs at approximately z = 7.913. uw = 2.01647 where the two branches join. For real z
less than the location of the branch point, the branches of w(z) are complex conjugate pairs.
Figpre 4.1 in this case shows, in dotted lines, the real part of w plus or minus the imaginary
part of w.

The set of singular points can be characterized by the following two theorems,

0*

Theorem 4.1 Let p(w, z) be a polynomial of degree (M, N), expressed as in (4.3), then
, .'- all w,(z) evaluated at zo must be finite unless p..g(zo) = 0, where p.%f(z) is defined in

(4.3). The number of such zo is at most N.

Proof: We first need to invoke a result by Cauchy [32, p.1231,
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Lemma 4.1 All the zeros of

f(z) = ao + a~z + a2z + ... + az (4.8)

where a, 0 lie in the circle

Izj < I +max ak/a, fork=O,1, n- 1 (4.9)

Applying the lemma to (4.3), we find that if (w, z) is a zero of p(w, z), the following

inequality must hold,

Iwj < 1 + mazpk(z)/p.Nf(z) for k 0, 1, , M - 1 (4.10)

If w(z) becomes unbounded then we need that p.%1(z) tend to zero. Since p.\t(z) has at

most N zeros, the theorem is proven. 0

The second theorem concerns itself with branch points, the second type of singu-

larity considered.

Theorem 4.2 The complex number zo is a branch point, i.e., two roots of p(w, z),
wi(z) and w(z), are equal at zo where wj(zo) = wj(zo) = Wo, if and only if the parttai
derivative of p(w, z) with respect to w is zero when evaluated at (wo, zo).

Proof: We will denote the partial derivative of p(w, z) with respect to w as pilW, z).

%" A well known result from the study of polynomial functions of a single variable states

that a polynomial p(z) has a multiple zero at zo, if and only if z0 is also a zero of the

derivative of p(z) r32'. This result can be applied trivially to the case of a bivariate

polynomial. If (4.3) when evaluated at z, has a multiple root at w0 , then from til,

discussion above, the polynomial

p,(zi,) - 2p-,(zo)w, -- - M p,,'z,)w,' (4. )

* .......
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must also be zero. However, this polynomial is just pW(wo, zo). 0

Ezahm ple: Consider again the polynomial of the previous example. In this case we can
exp~ress the branches of w(z) in explicit fornm.

= ±Z+I±z(Z+ Z 3  z (4.121
2 - 2z

+1 Z -1 z- v- 3 +Gz -5Z 2 +2z 3 
+z

4

W:! (Z 2- 2 (4.13)

According to Theorem 4.1. at each zero Of P2(Z) =1-z. at least one branch of w(z) must go
to infinity. Here the zero occurs at z = 1. and we see from (4.13) and Figure 4.1 that tv2(z)
b)ecomnes infinite as expected.

The polynomiial p,,. (uy. z) for our examipie is given by

P, (w, Z) =(1+ Z- 2) + 2(1 _ Z)W (4.14)

Calculaiting p,(w. z) at the branch point z = .7913. w = 2.01G47, we find that p, (w, z) is

approximately zero, as, predicted by Theorem 4.2.
From (4.12). we see that all branch points must satisfy the polynomial equation

0 =-3 +Gz -5Z, 2Z3 +-Z4  (4.15)

Thus for this example. at least. p(w. z) can only have at most 4 branch points. We will later
*.characterize more generally. the number of branch points a given polynomial may have.

Near an ordinary point, the functions w,(z) can be associated with analytic func-

- . tions, i.e., functions possessing a Taylor series expansion.

Theorem 4.3 Near an ordinary poi~nt z =a, the M values of the algebrai'c function

* w(z) are defined by M! convergent series

@4 iI+Wl( -a j z-a)2+1 )(.6
where the numbers w,, are the M distinct roots of p(w, a) =0.

Proof: This theorem is a straightforward application of the Im-plicit Function

Theorem '33, p.109'

Lemma 4.2 Let F(w. z) be a function of two cornplex variables which i's anaytic :n a
neighborhood z - z,, < r, u; - w,, < p of the point (w(,, zo), and suppose that

F(w,,,z(,) 01 aF4 0 ~ (4.17)aw(



Then there are neighborhoods (zo), .A(wo) such that the equation F(w, z) = 0 has
a unique root w = w(z) in N/(wo) for any given z E V4(zo). Moreover, the function
w = w(z) is single-valued and analytic on )I(zo) and satisfies the condition w(zo) = wo.

To use this theorem we first note that p(w, z) is an analytic function of w and z for

all finite w, z. Furthermore, from Theorem 4.2, if (wi0, zo) is an ordinary point, then
.N p,,o(Wo, zo) #0; thus, the condition of (4.17) is satisfied. We conclude then that a locally

analytic unique function w(z) exists such that p(wi(z), z) = 0 in a neighborhood of zo

* .and such that wi(zo) = to. Since there are M solutions to the equation p(w, zo) =0,

there are M such functions. ri

A corollary of this theorem is that each wi(z) is differentiable. It is straightforward

to calculate the derivative of each w,(z). From the relationship,

p(w,(z),z) =0 (4.18)

we get that

dp(w(z), z)
dz =0 (4.19)

Using the chain rule,

:"'" .dwi (z)
p.(w 1 (z),z) +pu(w,(z),z) - =0 (4.20)

or

dwi(z) p:(wi(z), z)
dz p C(w,z),z) (4.21)

The crucial importance of the study of w(z) is that each branch of w(z) can be

associated with an irreducible factor of p(w, z). This relationship is stated in the[ following theorem,
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Theorem 4.4 For each branch w,(z) of w(z) given by (4.16) and each ordinary point
- - "zo there is an irreducible factor of p(w, z), p,(w, z) such that

5 p,(w,(z),z) = 0 for all z in a neighborhood of zo (4.22)

Moreover, this is the only irreducible polynomial which satisfies the equation above.

Proof: Recall that any polynomial can be expressed as an essentially unique prod-

uct of irreducible polynomials,

p(w,z) = pI(w,z)p2 (w,z). pk(w,z) (4.23)

Let w,, = w,(zo). Since p(w, 0 , zo) = 0, we have according to (4.23),

P Wo, zO) = pI (Wo, zo) P2(w,o, Zo) ... Pk(WO, Zo) = 0 (4.24)

Thus at least one of the terms p,(wio, Zo) must be zero. However, since z0 is an ordinary

point, only one of these terms can be zero. Without loss of generality, let p, (wjo, Zo) = 0.

Since z0 is an ordinary point of the algebraic function of p(w, z), it must also be an

ordinary point of the algebraic function corresponding to pl(w, z). Thus from Theorem

4.3 we know that there is a locally analytic function g(z) such that p1 (g(z),z) = 0

everywhere in a neighborhood of zo and g(zo) = wi 0. However, if p1(g(z),z) = 0

then p(g(z), z) = 0. Since according to Lemma 4.2, the function wi(z) is unique in a

"" neighborhood of z0 , g(z) and wj(z) must be the same in this neighborhood. Therefore,

* t pl(w,(z), z) = 0 for all z in a neighborhood of zo. That this is the only such irreducible

Spolynomial follows from the fact tha two irreducible polynomials can have only a finite

number of common zeros. A theorem to this effect is introduced later in the discussion

" -. of Bezout's theorem. -
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From the theorem above, we see that we can associate with each branch of w(z)

an irreducible factor of p(w, z). The analogous procedure for univariate polynomials is

the fact that we can associate with each zero zi of p(z), an irreducible factor of p(z),

namely (z - zi). The crucial difference is that we are not able to break up the zeros

of p(w, z) into isolated zeros; the best one can do is to break up the zeros of p(w, z)

into different continuous sets of zeros. The reader should be aware that each branch of

w(z) is not associated with a distinct factor of p(w, z), that is, the fact that w(z) has

M branches does not imply that p(w, z) has M irreducible factors. For example, we

could have that both w,(z) and w2(z) correspond to pl(z).

Although we will have the opportunity to discuss algebraic functions further, the

properties described above are sufficient to understand the rest of this chapter. In

Chapter 5, we will take up the topic again, in order to develop some more results

necessary for the establishment of our new phase retrieval algorithm.

4.3 Bivariate Polynomial Factorization

4.3.1 Kronecker's Algorithm

Although univariate polynomial factorization has a long and productive history, the

' "" factorization of bivariate polynomials has enjoyed relatively little progress. The first

algorithm for factoring a polynomial in several variables is due to Kronecker in 1882

341 Of course, Kronecker's interest was in the mathematical problem of factoring

polynomials in several problems, not phase retrieval. The basic idea is to convert the

bivariate polynomial into a univariate polynomial, and then factors of the resulting
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univariate polynomial are associated with factors of the original bivariate polynomial.

Consider a general polynomial p(w, z) of degree (M, N). We seek to find a poly-

nomial g(w, z) which is a factor of p(w, z). The algorithm consists of four steps as

delineated below:

1. Compute degree bound Obtain an integer d > max(M, N).

2. Reduction of bivariate to univariate polynomial Generate P(w) which is given

by

(W)= p(w, wd) (4.25)

- ' "Note that because of the way we have picked d, this transformation between P(w)

S- and p(w, z) is reversible.

p 3. Factorization of univariate polynomial Factor P(w) into irreducible, i.e., lin-

ear factors,

-(w) (W) (W) .. " ,(w) (4.26)

4. Inverse reduction and trial division From the factorization in step 3, generate

all polynomials which divide P(w). Call a typical factor (w). Convert 4(w) into

a bivariate polynomial g(z, y) via the relation

g(w, Wd) = (W) (4.27)

and check if g(w, z) divides p(w, z). If so, stop; if not, try a different factor If

there is no aptropriate yw,,, then p(w,z) is irreducibie.

The relationship between the Canterakis algorithm and Kronecker's aigorithm be-

comes apparent if we note that the polynomials associated with jnj and ,-m, n; in the
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Canterakis algorithm are related byItllI

k(w) =p,(w, w : - +I) (4.28)

Thus, the Canterakis algorithm picks d = 2N + 1 as the parameter in Kronecker's

algorithm. Since the degree of p,(w, z) is (2N, 2N) for an N by N image, this is an

appropriate value for d. Then, the algorithm proceeds to factor p.(w, z) via Kronecker's

algorithm.

A severe problem with Kronecker's algorithm which precludes its general use is the

tremendous work required in step 4 of the algorithm. The amount of computation

increases exponentially as the size of the polynomial increases. Since the Canterakis al-

gorithm is basically Kronecker's algorithm, it also suffers from this exponential growth.

4.3.2 Kaltofen's Algorithm

In 1982, Kaltofen [351, presented an algorithm for reducing a bivariate polynomial

factorization problem to a univariate factorization problem which avoids the exponen-

' . tial growth experienced by Kronecker's algorithm. Again, this algorithm was developed

4"- solely in the context of the mathematical problem of polynomial factorization.

The first step in Kaltofen's algorithm is to find an ordinary point of the algebraic

function w(z). It can be supposed without loss of generality that zo = 0; otherwise, we

just need to make a linear change of variables in z. Thus, it can be assumed that a w(,

such that p(w0 ,O) = 0 has been calculated and that (wo,0) is an ordinary point.
The second step of the algorithm is based on developing a power series expansion

of a branch of the algebraic function w(z) around zero. That such an expansion exists
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is guaranteed by Theorem 4.3,

2 1p(w 0 + wjz +w z + -,z)= 0 (4.29)

There are many ways of calculating the {wj} set. The simplest way conceptually is

by matching powers of z, i.e. expanding (4.29) to a power series in z and then setting

each coefficient in the power series to zero. This yields a manner of evaluating {w,}

successively. There are much faster algorithms for finding the {w,} set which are based

on an algebraic version of Newton's method [36,37]; however, it is really not pertinent

to our discussion that we describe these methods here.

b lThe fourth and last step of Kaltofen's algorithm is based on the fact that each

branch of w(z) is characteristic of an irreducible factor of p(w, z) by virtue of Theorem

4.4, i.e., there is an irreducible polynomial g(w, z) that divides p(w, z) and, again for

all z in a neighborhood of z = 0,

.. z w Z + wz" + ,z) = 0 (4.30)

Em
S-: .From the discussion concerning Theorem 4.4, we see that which of the irreducible

.: factors of p(w, z) is specified is determined by which irreducible factor of p(w, z) satisfies

I g(w, 0) = 0. Picking a different solution w,, may result in a different irreducible factor

being identified.

Now that Taylor series defined by the {u;,} set has been extracted and associated

this series with one of the ,rreduciitie factors of 9(w, z), the question becomes how to

extract the coefficients of g(w. z) given the coefficient set {w,}. The answer is to use

1 (4.30) in "reverse", i.e., calcuiate the coefficients of g(w,z) from the known {w,} by

matching coefficients in z and setting them to zero. This yields a set of homogeneous
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linear equations in the unknown coefficients of g(w, z). The algorithm tries all possible

total degrees for g(w, z) up to totdeg(p) until it finds that the homogeneous linear

equations have a non-trivial solution. In the reconstruction from Fourier transform

magnitude problem of a signal with an irreducible associated polynomial, we would

not have to try all possible sizes, since the support of the signal, and therefore the

degree of the polynomial factor, is known.

Note that the Kaltofen algorithm does not have to go through the "combinatorial

explosion" required by the Kronecker algorithm. Thus, it is a promising vehicle for

factoring polynomials of reasonable size. From this discussion the Kaltofen algorithm

seems like a good candidate to effect the factorization of the polynomial associated with

the autocorrelation function as was done in the Canterakis algorithm, but without the

enormous computational requirements.

Indeed, we have tried using this algorithm and have found that it successfully re-

constructs signals with support up to [0, 512. However, as is well known, Taylor series

coefficients have to be calculated exceedingly accurately; otherwise, small errors in the

coefficients lead to great changes in the function as the series is evaluated away from

the origin. Similarly, the Taylor series coefficients in Kaltofen's algorithm have to be

calculated very precisely, or else the equations to be solved do not match the actual

solution. We have found that these round-off effects preclude the use of the algorithm

for signals with support larger than [0, 5]2. Another way of viewing the source of insta-

bility in the Kaltofen algorithm is that it essentially uses local information to extract

the factors of a polynomial; namely, the value and derivatives of the locus of roots of

the irreducible polynomial to be extracted.

'"' " 9
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An interesting aspect of this algorithm, however, is that it uses the zeros of p(w, z)

to isolate an irreducible factor of p(w, z). Unfortunately, it uses this strategy in a

numerically sensitive manner. An improvement of this method would be to find a way

of specifying the global characteristics of a single branch of p(w, z). It is hoped that

by using such global information, a more attractive way of isolating one irreducible

factor of p(w, z) can be found. The development and analysis of one such strategy is

the subject of the next chapter.

L-
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Chapter 5

New Closed Form Algorithm for
Reconstruction from Fourier
Transform Magnitude

We have hinted in the introduction that the approach we consider in this the-

sis is to explicitly view phase retrieval as a polynomial factorization problem and to

search for an algorithm. to factor polynomials efficiently and accurately. We have al-

ready noted that the Canterakis approach for reconstruction from Fourier transform

magnitude is implicitly the use of Kronecker's algorithm to factor the polynomial asso-

ciated with the signal autocorrelation function. However, we found that this algorithm

is extremely time consuming for even small signals. An alternative is Kaltofen's al-

gorithm for factoring polynomials. This algorithm, although not as computationally

expensive as Kronecker's algorithm, suffers from severe numerical instability due to the

. use of information which is very sensitive to round-off effects.

In this chapter a new algorithm for factoring bivariate polynomials is described.

- Although the algorithm is applicable to the factorization of any bivariate polynomial,

it is specifically developed as a vehicle for the phase retrieval problem. This algorithm

does not increase in complexity as the region of support increases as quickly as the

-21
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Canterakis or Deighton algorithms do and is more numerically stable than applying

the Kaltofen algorithm, allowing us to factor larger polynomials and thus reconstruct

larger images from the Fourier transform magnitude.

The algorithm is based on analyzing the set of complex pairs (w, z) where the

polynomial associated with the autocorrelation function is zero. Although the use of

this set of zeros to factor p,(w, z) is original, the importance of this set of zeros to the

problem of phase retrieval has long been recognized, beginning with the early work of

Napier and Bates 138].

5.1 Background and Overview

Before developing the algorithm formally, it is helpful to sketch the general

idea behind the method. Consider a reducible polynomial p(w, z) with two irreducible

factors r(w, z) and s(w, z); thus

p(w,= r(wz z) (5.1)

If (w, z) is a zero of s(w, z) then it must also be a zero of p(w, z). However, if (w, z) is

a zero of p(w, z) then a priori one cannot tell whether this zero corresponds to r(w, z)

or s(w, z). Of course, (w, z) must be a zero of at least one of them. Generating zeros of

p(w, z) is easy since p(w, z) is known; the difficulty resides in assigning each calculated

zero of p(w, z) to the appropriate irreducible factor of p(w, z). The main objective of

the development discussed beiow is to generate such an assignment strategy, so that

eventually we have a large number of zeros which are all guaranteed to correspond

exclusiveiy to either r(w, z) or s(w, z).

Suppose, then, that we have at our disposal a large number of zeros of.. for exampie,
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s(w, z). Then, for each zero (wk, Zk), the following equation must hold,

* s(wk, z) = 0 = Soo + SloWk + SOLZk + SI1WkZk + (5.2)

where s i are the coefficients of s(w, z). This equation is linear in the unknown sq. By

examining the null vectors of this set of equations we will be able to reconstruct the

-coefficients of s(w, z) and thus s(w, z) itself.

0 5.1.1 New Factorization Algorithm

An interpretation of w(z), the algebraic function corresponding to p(w, z), which

will prove to be crucial in our later development, is to consider it as a multi-valued

mapping of a path in the z-plane to several paths in the w-plane. A path is a complex-

valued function of a real parameter t, where t varies from to to t1

z(t) = X(t) + jy(t) (5.3)

such that x(t) and y(t) are continuous. Since we will be free to choose z(t), it will be

convenient to assume also that z(t) and y(t) are also piece-wise differentiable functions

of t. The mechanism by which this mapping occurs is easy to visualize. Consider an

ordinary point z,, = z(O) and all M solutions to the (univariate) polynomial equation

p(w.z,,) = 0. We denote each of these solutions by w1(0) for i = 1, -, M, Figure

.5.1. As z,, is changed in a continuous manner, thus generating z(t), the corresponding

.- f f the equation p(w, z(t)) will also change in a continuous manner, resulting in

-"the paths w, t), Figure 5.2 This view of w(z) mapping paths n the z-plane to paths

I- .. in the u-nlane is supported by the following theorem r 0 , p.25 ,
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z-plane *w()w-plane

El * zO) * 2(O)

*W3 (0)

~R~z} 3R{w}

- Figure .5.1: Points In the tv-plane corresponding to a value of z.
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{z}

Z-plane W, (O) w-plane

z (0)0

Z~t) w,((t

Figure 5.2: Paths in the w-plane which result from a path in the z-plane.
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Theorem 5.1 If z = z(t) (ti < t < t2) is a path consisting entirely of ordinary points
of an algebraic function w(z), then the values of w(z) along z(t) form a set wk(t)Jig (t, t < t,; k = 1,..., M) of M paths. -

In terms of the M branches of w(z), the paths described in this theorem are given

by,

Wk(t) = Wk(Z(t)) (5.4)

Thus, the trajectory of each of the paths is specified by each of the M branches of

w(Z).

Ezample: As an illustration, consider a path in the z-plane given by z(t) = ei2 ".(O < t <
. 1). Figure 5.3. The polynomial under study is p(w.z) = w2 - z. We now evaluate the two

paths w1(t) and w2(t) which form the image of z(t) under w(z). At each value of t. we have.
p(wi(t).z(t)) = 0. or wi(t) = eiK w 2 (t) = e-i". The resulting paths are displayed in Figure
5.4.

Theorem 5.1 extends our notion of w(z) from the local characterization given by

Theorem 4.3 to a global one. Note that this global characterization comes at the

expense of no longer being able to consider each w1(z) individually.

Ezample.: Consider the two paths z,(t) and zb(t) (0 < t < 1) given by

Z (t) = ei t  (5.5)

Zb(t) = 2 -e (5)

They are depicted in Figure 5.5. We consider again, the polynomial p(w. z) w2  z. Since
z,,(()) = zb(O). we can associate with z.(t) and zb(t) two paths which begin at the same value
of w = 1. w,(t) and wLb(t). The corresponding paths are drawn in Figure 5.6. Although
z(1) = Zb(l). we fin( that w,(1) # Wb(l). i.e., we have -moved" from one branch of w(z) to
an1other.

The reader may at this point realize the similarity between the Figures 5.3 to 5.6

and the technique of root locus analysis which forms an important part of classical

"Dc.ntrol anaiysis. The observation is well-justified since root locus analysis seeks to find

. .the zeros of the function

P(s, K) = H(s) -- KG(s) (5.7)

66



~{zz

Fg z(t)

i

- •* *67

I.

|6

' -,.. -.- . { -.
. . '- Cz-p.' ***lane'.



1.5

W2(0)
0-0

.2 Wj(O)

w-niane

Figure SA.: Image of z(t) -ei2NL' under the algebraic function of w2 - z.
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za ( 0)t)(0

Zb~t

zplane

* Figure 5.5: Two paths which begin and end at the same point in the z-piane.
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2-

do

0- Wa (0) Wb (0) Wl,(t)-'

w-plane 3 .

Figure 5.6: Mapping of paths to the w-piane.
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where H(s) is the feed-forward transfer function numerator, G(s) is the feed-forward

transfer function denominator and K is the feedback gain. The similarity becomes

obvious once we consider (5.7) as a polynomial in the two variables s and K. Moreover,

it is easy to show that P(s, K) is an irreducible polynomial as long as H(s) and G(s)

do not have a common factor. Thus, many of the observations we have made so far and

will be making in the future also pertain to root-locus analysis. Where our discussion

and root-locus analysis depart is that although in root-locus analysis, K is restricted

to be real, we will allow both w and z to take on complex values.

We need one more result regarding the path mapping property of algebraic func-

tions. This next result is analogous to Theorem 4.4 which was used by Kaltofen to

develop his bivariate polynomial factorization algorithm. Recall that Theorem 4.4

stated simply that each branch w,(z) of the algebraic function w(z) corresponding to

. -. a polynomial p(w, z) can be locally associated with an irreducible factor of p(w, z),

i.e., there is an irreducible polynomial pi(w, z) which divides p(w, z) and for which

pi(w,(z), z) = 0 is true everywhere in a neighborhood of an ordinary point. This next

theorem states a similar result for each path wi(t) which is an image of z(t) under

w(z).

Theorem 5.2 Let z(t) be a path in the z.plane consisting ezclusively of ordinary points
0, of an algebraic function w(z) corresponding to a polynomial p(w, z). If the path wi(t) is

an image of z(t) via w(z) in a given interval, then there is an irreducible factor pi(w, z)
A;- which divides p(w, z) such that p,(w,(t), z(t)) = 0 for all t in the given interval.

;4 "Proof: This follows rather directly from the fact that z(t) only includes ordinary

' -points and that z(t) and all the polynomials involved are continuous functions. Suppose
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that for t = to, (w,(to), z(to)) is a zero of pi(w, z) where pa(w, z) is an irreducible factor

of p(w, z). Express p(w, z) as the product pi(w, z)q(w, z). We want to show that for all

subsequent values of t, (wi(t), z(t)) is a zero of pi(w, z). We will have to make use of

Theorem 5.1, i.e., if z(t) consists of only ordinary points, then w(t) is also a continuous

path.

Suppose that at some point, the hypothesis is not true, i.e., pi(wi(t), z(t)) 5 0, say

at ti. Since (w,(t),z(t)) is a zero of p(w,z) for all, we must have that q(w(t,),z(t,)) =

0. Because of continuity, there must be a transition t' between to and t1 such that

p,(w(t'),z(t')) = q(w(t),z(t)) = 0. However, this would mean that p (w(t),z(t)) =

0 or that z(t) is a singular point of w(z). This contradicts the assumption that z(t)

consists of only ordinary points. The fact that this irreducible polynomial p,(w, z) is

the only one which contains (wi(t), z(t)) as a zero for all t will become obvious once we

introduce Bezout's theorem later on. C

The theorem above is exactly what is needed. From Theorem 5.2 we see that the

zeros of p(w, z) which lie on a path pair (w(t), z(t)) must all be from one irreducible

factor of p(w,z). An algorithm for isolating an irreducible factor of p(w,z) can be

described in the following three steps:

* Pick a path z(t) consisting entirely of ordinary points of p(w, z).

' Find a path w(t) such that p(w(t), z(t)) 0 for all t of interest.

* Find the irreducible polynomial d(w,z) such that d(w(t),z(t)) = 0 for all t of

interest. According to Theorem 5.2, the resulting polynomial d(w, z) will divide

p(wz).
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5.1.2 Picking a Path Consisting of Ordinary Points

toIn order to study which paths in the z-plane consist of only ordinary points, we need

to discuss in more detail the behavior and propensity of points in the z-plane which are

not ordinary, i.e., the singular points. Recall that there are two types of singular points:

the first type is composed of all z such that one branch w,(z) becomes infinite. We

have already shown in Theorem 4.1 that there are deg,.(p) such z. The second type of

- singular point consists of all z such that two branches coalesce at z, i.e., w,(z) = wj(z)

at z. Theorem 4.2 stated that if (wo,zo) is such that wo = wi(z 0 ) = wi(zo), then not

only p(wo,z 0 ) = 0 but also p,,(wozo) = 0 as well. Since p,(w,z) is also a bivariate

polynomial and since (wo, zo) resides in the common zeros of the two polynomials

p(w, z) and p.(w, z), we need to discuss briefly the topic of the intersection of the zeros

of bivariate polynomials.

In general, two bivariate polynomials will only have a finite number of common

zeros. This can be supported intuitively by the fact that a possible common zero

(w0 , zo) of p(w, z) and q(w, z) can be represented by the four dimensional real vector

[Re(wo), Im(wo), Re(zo), IM(zo)IT. On the other hand, (w0 , z0 ) must satisfy simultane-

ously the four equations below,

Re(p(wo,zo)) = Im(p(wo,zo))= Re(q(wo,zo))= Im(q(wo, zo))= 0 (5.8)

- The maximum number of such :o.:,rmon zeros is the subject of Bezout's theorem below
mp.-
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Theorem 5.3 If p(w, z) and q(w, z) are bivariate polynomials of total degree r and
s respectively with no common factors, then there are at most rs distinct pairs (w, z)
where

- where p(w, Z) = q(w, Z) = 0 (.9)

S. Ezample: An example where the maximum number of common zeros is attained with finite
w and z is the pair of polynomials

p(w. z) = w2 + z 2 -4 (5.10)
q(w.z) = w2 - 2 -1 (5.11)

The set of zeros of these polynomials for real (w, z) is plotted in Figure 5.7. The total degree
for each polynomial is 2. The common zeros occur at (±v3, ±vI5). Since the total degree of
each polynomial is 2. Bezout's theorem predicts a maximum number of common zeros of 4.
which is attained exactly in this case.

" "One application of Bezout's theorem which we will have need to make use of later

on, is that it specifies the minimum number of zeros needed to specify an irreducible

polynomial to a scale factor. We will discuss this point in more detail in a later part

of this chapter.

Bezout's theorem applies to any two polynomials with the specified total degree.

In much of our discussion we will know the degree in each variable as well as the

- "total degree of the polynomial in question. An obvious question then is whether we

can somehow tighten the bound on the number of common zeros if the degree of the

polynomials involved is known. In a sense we cannot do this because there is a strong

form of Bezout's theorem where it is shown that the bound described above is actually

achieved. If the degree of p(w, z) is (M,, N,) with the w4Pz p term non-zero and the

degree of q(w, z' is (Mq, Nq) with the i- qz-fq term non-zero then the strong form of

Bezout's theorem states that there are (Mp + Np)(M + Nq) common zeros. However,

- many of these zeros are "phantom" zeros where w or z or both are infinite. In our
4.'...

study we will be concerned with finite zeros. Therefore, it is important to be able to

,,.. .
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study the number of finite zeros which two polynomials with specified degree can have

in common. This is the topic of Appendix B where the following theorem is proven,

Theorem 5.4 Let p(w, z) and q(w, z) be two polynomials of degree (Afp, Np) and (Mq, Nq)
with no common factors, then there are at most NpMq + NqMp pairs of finite complex
numbers (w, z) such that

p(w,z) = q(w,z) =0 (5.12)

That the bound above can be attained exactly for some p(w,z) and q(w,z) is

demonstrated by the following example:

Ezample: Consider the two polynomials of degree (1. 1)

p(w.z) = wz -2 (5.13)
q(w, z) wz + w - z - 3 (5.14)

... The zero sets for w. z real are drawn in Figtre 5.8. Since these two polynomials have 2 common
finite zeros, the bound of Theorem 5.4 is achieved.

Recall that branch points of p(w, z) reside in the intersection of the zeros of p(w, z)

and p,,(w, z). The theorems just discussed specify the number of zeros in common

between two polynomials which are relatively prime. As soon as we show that in most

cases p(w, z) and p,,(, z) are relatively prime, then we can use these theorems to specify

the maximum number of branch points p(w, z) may have, which in turn bounds the

number of singular points in the z-plane.

lo-.t Theorem 5.5 Let p(w, z) be expressed as a product of irreducible primitive polynomials
.-z.'." and a constant

p(w, Z) = c I p,(w, Z) (5.15)

If .'w z) # pk(w, z) for 2 i k, then p(w, z) and p, (w, z) are reiatively prime.
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Proof: A polynomial such that its irreducible factors do not repeat is called a

square-free polynomial. Thus, the condition above is that p(w, z) be square-free. As-

sume that p(w, z) and p, (w, z) have a common non-trivial irreducible factor p,(w, z).

Therefore p,(w,z) divides p,.(w,z), say p,.(w,z) = p,(w,z)q(w,z). However p(w,z)

can be expressed as,

Per(W, Z)~ , ia (wZ) f p,(w, z)(5.16)

=p,. (w, z)A(w, z) + p, (w, z)B(w, z)

where pi.,.(w, z) is the partial derivative of pi(w, z) with respect to w,

P
A(w, z) = -p,(w, z) (5.17)

e=2

and B(w, z) is a polynomial in w and z. Since we also have that p,L(w, z) = pi(w, z)q(w, z),

p,,(w, z)A (w, z) = [q(w, z) - B (w, z)] p(w, z) (5.18)

Therefore p,(w, z) divides A(w, z) or pi.,.(w, z). However, since p(w, z) has no repeated -4

factors, A(w, z) and p1 (w, z) are relatively prime. Furthermore, pi.,r(w, z) is of lower

total degree than p, (w, z) and therefore cannot contain p1 (w, z) as a factor since pi (w, z)

is irreducible. Therefore pj., (w, z)A(w, z) and p,(w, z) are relatively prime. Thus the

assumption that p(w, z) and p,,(w, z) have a common factor leads to a contradiction.

Using Theorem 5.5, we can deduce that for bivariate polynomials which are square-

free, the number of singular points in the z-plane is finite, and in fact the maximum

number of finite singular points can be bounded by the minimum of the bounds of
Sq

Theorems 5.3 and 5.4.
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Theorem 5.6 Let p(w, z) be a square-free polynomial of degree (M, N) and total degree
n,, then the number of finite singular points is bounded by
min(np(n , - 1),2(M - 1)N) + N.

Proof: Since p(t, z) is square-free, p(w, z) and pW(w, z) are relatively prime. Since

the total degree of p, (w, z) is np - 1 and the degree of p, (w, z) is (M - 1, N), the

maximum number of finite common zeros is min(np(np - 1), 2(M - 1)N). The first

term is due to Bezout's theorem; the second term is due to our intersection Theorem

.5.4. From Theorem 4.2, this means that the number of branch points of p(w, z) is

bounded by min(np(np - 1), 2(M - 1)N). From Theorem 4.1, the number of singular

points where a branch of w(z) becomes infinite is at most N. Combining the two sets

of singular points we conclude with the total bound of min(np(np - 1), 2MN - N) + N.

The importance of the theorem above at this point is not the actual bound on the

number of singular points, but rather that the number is finite. This means that if we

pick a path z(t) at random, it will almost surely consist exclusively of ordinary points.

The previous discussion showed that almost all paths in the z-plane consist of only

ordinary points, since singular points form a very sparse set, consisting of only a finite

- number of points. In the following section we address the problem of specifying a path

"- . .w(t) for a given path z(t) such that p(w(t), z(t)) is zero for all t of interest.

5.1.3 Tracking Zero Paths

Given a path z(t) consisting of ordinary points, and an initial zero of p(w, z), say

p(c,z(O)), it is straightforward to pose a differential equation that w(t) must satisfy.
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Recall from (4.21) we calculated the derivative of each branch of w(z) as,

dwj(z) .(tj (Z),z) (5.19)
dz p,, (w(z), z)

This in turn implies that the derivative of w(t) with respect to t must be

dw(t) p:(w(t),z(t)) dz(t)
.... ""dt p.(w(t), z(t)) dt

We are ieft with the following first order initial value problem:

Find the function w(t) which satisfies, w(0) = c and

dw(t) p.- (w(t), z(t)) dz(t)
:+'fdt p.(w(t),z(t)) dt

By solving the initial value problem above, we can calculate a w(t) for any z(t) such

that p(w(t), z(t)) = 0 for all t of interest.

5.1.4 Extracting Polynomial Coefficients from Zeros

0 .At this point we have, at least conceptually, an arbitrarily large number of ze-

ros of one irreducible factor of p(w, z), say d(w, z); namely all the complex pairs

(w(t), z(t)). The next part of the procedure extracts the coefficients of d(w, z) from

"-" its zeros. This problem was first considered and solved by Curtis 39,401. Basically,

we sample (w(t), z(t)) at tk, t 1,.-, K to yield K simultaneous homogeneous linear

equazions for the coefficients of d(w, z),

t'+ ":" d g., (41t deg, Ill

.Z x-" d,.,w z" 0 fork 1, ,K (522

where d ......, is the set of coefficients of d(w, z).
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There are two points that need to be addressed at this point. First is the question

of how many samples of the zeros of d(w, z) are needed to guarantee that there will be

essentially only one solution to (5.22). The second question is how to specify deg,,(d)

" and deg:(d) without knowing d(w,z).

The question of determining the degree of d(w, z) is addressed in Appendix C. The

reason why we do not discuss the problem here is that in the case of the phase retrieval

problem, the issue does not arise as we will see later. Let us assume then that the

degree of the irreducible factor of p(w, z) to be extracted is known. We now want to

specify K such that the coefficients of d(w, z) will be retrievable from (5.22).

Consider a non-zero solution to (5.22), say the coefficients a,.. We can associate

with this set of coefficients a polynomial a(w, z) given by,

deg, (d) degq (d)

m=O n0

Since d(w, z) is irreducible, and a(w, z) and d(w, z) have the same degree, d(w, z)

and a(w,z) must be relatively prime or related by a constant factor. From Theorem

5.4, then d(w, z) and a(w, z) can have at most 2deg,,(d)deg:(d) zeros in common. Since

a,,, is a solution to (5.22), the polynomial a(w, z) must satisfy,

a(Wkzk) =0 (5.24)

Thus, a(w. z) and d(w, z) have K zeros in common. If we pick K > 2deg.(d)deg,,(d),

then atw, z) must be related to d(w,z) by a constant factor which implies in turn that

4 L i,,,.,, and d,,.,, are related by a constant factor. Therefore, by finding a null vector of

the niatrix displayed in (5.22) we have recovered an irreducible factor of p'w, z). Note
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that using Theorem 5.3, the minimum number of equations required to guarantee the

correct reconstruction is twice the number specified by Theorem 5.4.

Let us review the steps necessary to find an irreducible factor of a given square-free

bivariate polynomial p(w, z).

1. Find an ordinary point zo of the algebraic function corresponding to p(w, z).

2. Using zo, find a wo such that (wo,zo) is a zero of p(w,z). Such a wo can be

calculated via the method described in Section 4.2.2. This complex pair will also

be a zero of an irreducible factor of p(w, z), d(w, z).

3. Generate a path z(t) which begins at zo and which consists only of ordinary

points. Since a square-free polynomial has a finite number of singular points,

almost any path will consist of only ordinary points.

4. Use the differential equation (5.21) and the initial condition wo0 = w(O) to calcu-

late a path w(t) which satisfies p(w(t), z(t)) 0 for all t of interest.

5. Sample the path pair (w(t),z(t)) to yield (wk,zk) and solve (5.22) to get the

coefficients of an irreducible factor of p(w, z), d(w, z).

5.2 Considerations for Phase Retrieval

In the discussion above we considered the polynomial factorization problem in gen-

eral. Here we would like to consider the phase retrieval problem specifically. We first

note that since in almost all practical cases, the polynomial p,(w, z) is irreducible, the

autocorrelation polynomial p,(w,z) will only have two factors, namely p,(w,z) and
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-,(w, z). Therefore, unlike the general polynomial factorization problem, the degree of

. the factors is known; if deg(p,) = (2M, 2N) then deg(p,)= deg(p,) = (M, N). One fi-

nal point to consider is under what situations p,(w, z) is a square-free polynomial which

implies in turn that p,(w, z) has a finite number of singular points. Since in practical

cases, p,(w, z) is irreducible, we restrict our attention to this case only. In this situa-

" tion, p,(w,z) has only two factors, p,(w,z) and P,(w,z). Thus, if p,(w,z) $ ,(w,z)

then p,(w, z) is square-free. Pictorially, this means that z[m, n] when rotated by 180

degrees does not look identical to the original image. Thus, we have the following

theorem,

Theorem 5.7 If the polynomial associated with x[m,n], pZ(w,z) is irreducible, and
p,(w, z) is not equal to its mirror polynomial, then the polynomial associated with
rm, n will be square-free.

Since most images do not have this symmetry property we can be assured that

"1 p,(w, z) will be square-free and therefore it will have a finite number of singulair points.

This implies in turn that most paths in the z-plane consists of only ordinary points.

An M by N pixel image will have an associated polynomial of degree (M- 1, N- 1).

-x .Thus, if this polynomial is irreducible, it is specified, according to Theorem 5.4, by a

number of zeros greater than 2(M - 1)(N - 1). The minimum number of equations in

* (5.22) necessary to assure a unique solution becomes 2(M - 1)(N - 1) + 1.

The total algorithm for recnstruction from Fourier transform magnitude of a signal

with an irreducible associated polynomial can be decomposed into the following steps.

1. Calculate rm, nl from X(ei " , ei")j via (2.13).
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2. Form p,(w, z) from r[m, n].

3. Pick z0 such that it is an ordinary point of p,(w, z). Almost all values of z') will

be adequate.

4. Find a wo such that p,(wo, zo)= 0.

5. Pick a path in the z-plane consisting of ordinary points such that z(O) = z0 and

solve the differential equation using w0 as the initial condition and (5.21).

6. Pick enough (w, z) pairs such that (5.22) has a unique solution. By our version

of Bezout's theorem the minimum number is 2(M - 1)(N - 1) + 1 for an M by

N image.

7. Since p,(w, z) is irreducible, then the solution to the set of equations above yields

coefficients proportional to the image values x[m, n] or 5.[-m, -n].

8. Normalize the coefficients found such that

•xm, n r[, 01 (5.25)
Sm .11

A conceptual flowchart of the steps involved in the algorithm is depicted in Figure 5.9.

Ezample. Before considering some practical images, it is instrnctive to illustrate the
alzorithm using a small example. Consider the situation where we are to reconstruct the
following ima_-e from the Fourier transform magnitude,

""' 4 2 1

•[m.n]= 0 3 3 (5.2C
3 0 1

This inaze has associated polynomial given by.

p,(wz)=4- -2z--z +3wz+3wz 2 3w(: 2  (5.27)
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autocorrelation function - r[m, n]

associated polynomial = pr(w,z)

zeros of pr (w, z)

zeros of p (w, zeros of x(W, z)

m n] °m-o n,

0,

Figure 5.9: Algorithm steps in new phase retrieval algorithm.
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As a path in the z-plane. we will use z(t) = .8ei 2vt, for t between 0 and 1. i.e.. a circle of radius
.8 centered at the origin, Figure 5.10. The reason for using this path is discussed in the next
section. For this path. we can calculate the paths wilt) in the w-plane such that p, (wi(t), z(t)) =

0 for all t of interest. These paths are drawn in Figure 5.11. We can similarly calculate the

paths in th w-plane which correspond to zeros of the mirror polynomial of pz(w. z), i.e., the
polynomial a,,,ciated with the signal.

'-" 103

3 3 0 (5.28)
124 .

These paths are shown in Figtire 5.12. Comparing Figures 5.il and 5.12. we see that the paths

Zo

1.5

0 -- .".0
11-

°". -z(t) z(O). -

6Z

. ---..

z- plane

Figure 5.10: Path chosen in the z-plane for reconstruction example. The unit circle is
drawn as a dotted line.
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AW1(t)

1- ~W 1 (O)

0--

Wv2 (t)

.1% -2.5
-2.5 -2 -l12

w- plane

Figure 5 11: Resulting paths in the w-plane for given z(t) The path w1(t) is drawn as
* a solid line, while w,(t) is drawn as a dashed line.
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w-plane

2-n

""" Figure 5.12: Resulting paths in the wv-plane for given z(t) for mirror polynomial of
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are not reciprocal images as might be expected. This would only be the case if the path chosen
in the z-plane were the unit circle exactly.

Of course. we assume that this image is actually unknown but that the autocorrelation
function is given or readily calculated.

4 2 13 6 3
12 21 12 12 9

rim, n]= 7 19 49 19 7 (5.29)

f 9 12 12 21 12
3 6 13 2 4

We can similarly calculate the polynomial associated with r[m. n]. p,(w. z). The paths wi(t)
in the w-plane such that p,(wi(t).z(t)) = 0 are shown in Figure 5.13. Note that the paths
shown in Figlre 5.13 consist of those corresponding to original image. drawn as a solid line.
an(d those corresponding to the image rotated, drawn as a dashed line. The present algorithm
does not calculate all these paths in the w-plane: rather, it begins with a one zero of p,(w, z(0))
and generates the single path which begins at this zero. Figure 5.14. One may at first glance
believe that there might be some ambiguity at the location in the tv-plane where two paths
cross. However. the reader should note that an ambiguity will only occur if the paths cross in

E the w-plane at the same value of z and w. In other words, one may visualize these paths as
trajectories of infinitesimal particles which travel over the tv-plane. An ambiguity which would
preclude the possibility of isolating a single path would only occur if two particles collide. i.e.,
are on the same position at the same time. Using samples of the path pair (w(t).z(t)). the
linear equation (5.22) is solved, and after normalization, results in the image,

.- 1 0 3
3 3 0 (5.30)

""'" :111 2 4

Comparing Figures 5.11. 5.12 and 5.14. we see that we followed a path which corresponds to the
mirror polynomial of p,(w, z). Thus. the resulting reconstruction is rotated by 180 degrees.

The next section is concerned with some issues involved in implementing the algo-

rithm just presented for images much larger than that of this simple example.

5.3 Implementation Issues

The theory developed in the previous chapter has been applied to write a computer

program to extract an image from its Fourier transform magnitude. In developing

this program several practical considerations need to be addressed; they all revolve, as

would be expected, around the effects of finite precision representation of numbers in
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2-2

w- plane R

Figure 5.13: Zero paths of the polynomial associated with the autocorreiation function
* # of the example. Zeros of solution polynomial are shown as solid, those corresponding

~. tothe mirror polynomiai are dashed.
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0-

-2-

-25 -2 -3 2 2. 5

w-plane

* Figure 5.14: Single zero path f p7(w, z) calculated by algorithm.
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a computer. In the section below we discuss these considerations and how they have

been incorporated into the final algorithm.

The first consideration relates to the proper choice for a path z(t). Recall that

in the description of the algorithm, z(t) is allowed to be arbitrary, as long as it is

composed strictly of ordinary points of the algebraic function defined by the polynomial

associated with the autocorrelation function, p,(w,z). Theoretically, z(t) could be a

short line segment in the z-plane. In this case, the resulting set of zero samples would

be representative of a small region in the total set of zeros of this factor. When one then

tries to solve the set of linear equations given by (5.22) to extract the coefficients of this

factor, the equation coefficients will be almost the same, inviting numerical problems.

The objective then is to generate a path z(t) which is as varied as possible so that the

resulting samples of the zeros of the factor polynomial reflect in an accurate manner

the total set of zeros of this factor.

A second consideration concerns the evaluation of high degree polynomials. In

evaluating p,(w, z), z has to be raised to a high power, namely the degree of p,(w, z)

in z. For an N by N image, this degree is 2(N - 1). If the magnitude of z is large

or small, this will lead to severe loss in numerical precision. This consideration then

implies that the magnitide of z(t) for all t should be in the proximity of one.

Although we would like to have the magnitude of z(t) be close to unity, the unit circle

itself has to be avoided. Consider a signal zim, n! with Fourier transform magnitude .1

which becomes zero at (ezp(ju), ezp(jv)). Then z = ezp(ju) and w = ezptjv) is a

zero of both p,(w, z) and 1 (w, z), i.e.. z = ezp(ju) is a singular point. Thus, for some

images there are singular points on the unit circle in the z-piane. An adequate strategy
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is to pick a path z(t) where the magnitude of z(t) is some number close to but not equai

to one. Once z(t) and the initial value w0 have been specified, the resulting path w(t)

is completely determined. For this reason, it cannot be assured that the magnitude of

each sample w(t) will be close to unity even if the magnitude of z(t) is close to unity.

At first glance this seems like a severe problem, and in fact it can lead to numerical

problems in some cases. However, in the great majority of cases we considered, this

problem did not arise. There are two explanations for the well-behavedness of w(t);

first, w(t) will become large only if z(t) passes near the type of singular point where the

-- - algebraic function w(z) becomes infinite. We have already shown that there are few

such points. Similarly, one can show that w(t) may become zero only if z(t) crosses one

of a finite number of points in the z-plane. As long as the z(t) path does not come close

to this set of points, we can expect that w(t) will be well-behaved. Second, it is well

known that the roots of large polynomials with arbitrary coefficients tend to cluster

around the unit circle f41]. This behavior has indeed been observed in the numerical

experiments.

With the above considerations in mind, the path shown in Figure 5.15 was chosen.

The path z(t) travels counterclockwise in a full circle of radius slightly larger than 1

(ranging from 1.1 to 1.2) and then travel clockwise in a circle of radius slightly less

than I (ranging from .8 to •9). At this point, the path pair is "exchanged". Suppose

that at the end of the depicted path. the zero pair is (wo, .9). At this point, a new

path is begun using w as the independent variable. This path begins at w,, goes to

w = 1.1 and then travels in the same trajectory as z(t), Figure 5.16. As long as the

exchange occurs at an ordinary point of z(w), and a path consisting of only ordinary
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points is used, the resulting zeros of p,(w, z) calculated will continue to correspond to

a single irreducible factor of p,(w,z). Intuitively, this "exchange" between w and z

leads to an equal consideration of the vertical and horizontal orientations of the image

and thus presents a more representative sampling of the zeros of one factor of pr(w, z)

or P,(w, z). To demonstrate the complexity of the paths involved, in Figures 5.17 and

5.18 we show a portion of a typical path z(t) and the resulting path w(t), for a 20 by

20 image.

The strategy described in the previous paragraph was not successful in all trials.

We have applied our algorithm to about 40 images of sizes 20 by 20 and larger, and

have found that for this range of image size and one out of every ten images, the path

picked was close enough to a singular point that the zeros calculated changed from one

factor to another.

One way to avoid this is to calculate where all the singular points are via the

discriminant polynomial discussed in Appendix B, and then generate a path which is

far from any singular point. An alternate strategy is to keep monitoring the partial

derivative of p,(w,z) with respect to w. If this derivative becomes zero, then the

trajectory may be approaching a singular point. Then, the location of the singular

S. point can be located and circumvented. We have not implemented either of these

strategies which would have significantly increased the computational requirements of
0,

the program. Since this situation occurred so seldomly, a more efficient strategy is to

restart the algorithm using a slightly different path. In all our experiments it was never

found necessary to use more than two trial paths.

The next consideration, now that the choice of the path z(t) has been discussed, is
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2.5

2-

1- z(t)

0- *Z(O

-2 -

-2.5 -2 .1Q 2 2.5 RZ

* . z- plane

Figure 5.17: Portion of a path in the z-plane.
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-2.5 -2 -0 2 2.5 Rw

w- plane

Figure 5.18: Typical path in the w-plane for 20 by 20 image.
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the solution of the differential equation,

dw(t) " _ (,.(W,Z) dz(t) (5.31)

* dt -p,..(w, z) dl 5.1

This equation is converted into a system of two simultaneous ordinary differential

equations by considering the real and imaginary parts separately. Equation (5.31) then

becomes a (nonlinear) vector initial value problem with a governing differential equa-

tion of first order. This problem has been studied extensively and several algorithms

-P have been developed which use variable step size techniques to achieve a pre-specified

accuracy 142]. In practice, we have found it more computationally efficient to use the

differential equation solver to find a few digits of accuracy for w given z and then use

the following version of Newton's method to calculate the zero of p,(w, z) accurately.

S.- Suppose that an estimate of a zero of p,(w, z) for a given z has been found, ivo. This

-, estimate can then be improved via the iteration,

"w+ = wi - (5.32)z)

One last issue to be resolved is the proper computation of one solution to the

homogeneous set of equations (5.22). Recall that the associated matrix , say M, has

rank deficiency of 1, i.e., it has a unique (to a constant) non-trivial null vector. The

approach we have taken is to use the QR algorithm with column pivoting [431. This

o algorithm calculates the following factorization of an m by n < m matrix M of rank

n - 1:

M =QRII (5.33)
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where Q is an m by m orthogonal matrix, R is of the form

R,,j r] n-I -
R= , n

0 0 1 (5.34)

n-l I I

where R11 is non-singular upper triangular, r is a column vector, 0 is a row vector

consisting of all zeros, and II is a permutation matrix. Once we have the factorization

above, we can find a solution to M = 0 as

y = -Rj r (5.35)

X~ (5.36)

-10

V-,

- . °



Chapter 6

Numerical Results

In this chapter we illustrate the performance of the new phase retrieval algorithm

by applying it to several families of images. We have applied this algorithm to about

40 different realistic images of size 20 by 20 and above but we will just be showing

some representative examples.

We follow these examples by a study of the effect of noisy observations on the

reconstruction algorithm and a comparison of the computational requirements of the

new algorithm with the Deighton algorithm.

6.1 Examples of Application of Factorization Algo-

rithm to Phase Retrieval

In this section we present several examples of the application of the phase re-

trieval algorithm to several different types of images. The experimental procedure is as

follows. The autocorrelation function of the original image is first calculated and the

polynomial associated with this autocorrelation function formed. The phase retrieval

.. , . algorithm is then used to factor this polynomial. The coefficients of the irreducible fac-

tor extracted then correspond to the pixel values of the reconstructed image. In every
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case it is assumed that the support of the image, or rather, the size of the smallest rect-

angle surrounding the support of the original image, is known. In order to emphasize

the fact that we are actually reconstructing an image from its autocorrelation function,

we display the original image, its autocorrelation function, and the reconstruction. In

all examples, it is assumed that the unknown image corresponds to a set of intensi-

ties which must be non-negative. This requirement is certainly not necessary for our

algorithm to be applicable; it only removes the sign ambiguity.

In Figure 6.1 we applied the phase retrieval algorithm to reconstruct a 25 by 25 pixel

image. This size image is the largest that could be accommodated in our Vax/1I-750

computer system storage capability without excessive memory paging. In this case,

the reconstruction has the same orientation as the original. In the second example,

another 25 by 25 pixel image, Figure 6.2 was reconstructed. In this example, the

resulting reconstruction is rotated by 180 degrees. As mentioned earlier since for the

case of rectangular support, an image and its 180 degree rotated version have the same

autocorrelation function, it is impossible to restore the absolute orientation of the

image. Figures 6.3 and 6.4 show the result of applying the reconstruction algorithm

to different families of square images. Figure 6.3 is a high contrast image of size 20

by 20 pixels which may be representative of an application in astronomy. Note that in

this case, the support of the image is not assumed known, since it is not rectangular;

however, it is assumed that the smallest rectangle surrounding the support is known.

The image in Figure 6.4 consists of a 20 by 20 image composed of independent random

noise uniformly distributed between 0 and 1. This example is especially interesting

'""" since the autocorrelation function of images with random coefficients are very similar.
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(a) (c)

(b)

Figure 6.1: Girl image. (a) Original Image, (b) Autocorrelation function, (c) Recon-

* . struction.
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(a) (c)

Figure 6.2: C-Man image. (a) Originail inage, (b) Autocorrelation function, (c) Re-

construction.



This is due to the fact that most of the autocorrelation function content is concentrated

.- at r[0, 01. This is also the family of objects for which the iterative algorithms performed

* very poorly.

. .- If the support of the image is non-symmetric so that the image rotated by 180

El degrees would not "fit" in the known support constraint, then the rotation ambiguity is

removed. However, the algorithm described in this thesis does not use this information.

Implicit in our development is that extracting either p,(w,z) or P,(w,z) is adequate.

In the situation of a triangular support, P.,(w, z) is associated with a signal which does

not satisfy the support constraint. However, our algorithm is just as likely to return

such an invalid signal. For example, in Figure 6.5 we show the result of applying our

-. algorithm to a 20 by 20 pixel image with triangular support. The reconstruction (by

chance) has the wrong support, since it is rotated by 180 degrees. This effect however,

is of minor concern since it is a trivial task to extract the correct reconstruction from

*: such a rotated version. This is a second example where only a bound on the support

Ii is assumed known, rather than the exact bound.

6.2 Effect of Noise on Reconstruction

In an effort to characterize the susceptibility of the algorithm to errors in the known

data, we studied the effect of adding independent gaussian noise to the known autocor-

relation function of a real image, and then applying the phase retrieval algorithm to this

noisy autocorrelation function. Adding noise in this domain is equivalent in some sense

*l to adding noise to the Fourier transform magnitude squared. Since most applications

of phase retrieval measure either the autocorreiation function or the Fourier transform
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(a)(c

(b)

Figure 6.3: Astronomical object. (a) Original Image, (b) Autocorrelation function, (c)

Reconstruction.
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magnitude squared, it was felt that this form of degradation is more pertinent than

adding noise to the Fourier transform magnitude directly.

Consider the autocorrelation function rim, n] of an unknown image x[m, n). A noisy

version of r[m, n] was calculated, f[m, n] via,

[m, n] r[m, nj + w[m, n].1)

The signal wfm, nj consisted of simulated gaussian random noise of variance o' with

- the added condition that w[-m, -nJ = w[m, nJ. Thus, it is assumed that only non-

redundant measurements of the autocorrelation function were made.

4 The resulting autocorrelation function P[m, n] is thus symmetric about the origin.

Thus, this degradation assumes that the signal is known to be real and furthermore,

that the support of the image, i.e., the support of the true autocorrelation function,

is known exactly. Given a correlation signal to noise value, SNR,, the variance of the

added noise was calculated as

2 _ r fm , n ]2(6 2

SNRI(62

The phase retrieval algorithm was then applied using this noisy autocorrelation func-

tion. The reconstruction signal to noise ratio, SNR, was calculated as,

•-..(z[m, nj - m, n]) 2

SNRo = ~ m~fl z~m(6.3)

where zxm, n] is the original image and ifm, nj is the reconstructed image. The SNR,

was maximized over a rotation of the reconstruction by 180 degrees.

L s The experiments were performed for two image sizes, 20 by 20, and 16 by 16. For

each image size, two images were used, denoted here as "I" and "2", and two sets of
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pseudo-random noise fields, "A" and "B". The magnitude of the noise was changed

until SN)?0 defined in (6.3) was in the range of 10. The results of these experiments

are displayed in Figures 6.6 and 6.7.

- Reconstruction SNR
1e+08

le*07

'e+06

10.0000.-

* ~10000- 7-

*2-A

1000 2-

-. 41 10+1 -e 1 e 1 e 1 e 1 e2 e 2

Data SNR

Figure 6.6: Effect of noise on reconstruction for 16 by 16 pixel images. Graphs shown

correspond tc the application of noise signals "A" and "B" to images I1 anci2.

We note that the algorithm is very sensitive to noise. It is difficult to specify

the sensitivity of the algorithm since It varies dramatically between images and noise

A10

0 40% .*



Reconstruction SNR

* 2-8

$ 1-A 1-8

2-A

100

le+1 le+ 0 'e '-;

Daa N

Figure .7: Efect of oise o reconsructio for 20by 20 iximae.Gphsow

corsodt h ppiaino0os0igas""ad""toiae I n""



signals, (see for example I-A and I-B in Figure 6.6). However, it seems that for 16 by

16 images, a SNR, of better than 1016 is required for faithful reconstruction. For 20

by 20 images, a SNR,. of I011 seems to be required for most images. -

The sensitivity of the algorithm to small amounts of noise can be explained with

the help of the discussion in Section 3.2.1 regarding reducible and irreducible polyno- -r

- mials. A small perturbation to the true associated polynomial p,(w, z) will result in

an irreducible polynomial. As the perturbation increases, p,(w, z) will no longer be

even "approximately" reducible. This will result in difficulty in finding a good approx-

imation to the factors of the original factorable polynomial p,(w, z). A more formal

" argument supporting this observation is presented in [44].

6.3 Computational Requirements

In order to compare the computational requirements of the new algorithm with

Deighton's algorithm, we measured the number of CPU seconds which are required

to reconstruct a typical image using the new algorithm. The solid plot in Figure

6.8 is a display of the number of CPU seconds required per reconstruction plotted

4
against image size. We see that for small images the Deighton algorithm is much

more efficient. However, for image sizes larger than about 11, the Deighton algorithm

becomes computationally more expensive.

We have found experimentally that as the image size increases, the QR decomposi-

tion becomes a dominant part of the computation in the new algorithm. This ieads us

to hypothesize that the algorithm asymptotically requires computations in the order of
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NO for reconstructing an N by N image. In contrast, the Deighton algorithm requires

computations which grow exponentially with N. A more efficient implementation of

I- either the Deighton or our algorithm would certainly affect the point at which our

algorithm performs better than the Deighton algorithm. However, the important thing

to note is the rate of growth of each algorithm rather than the actual computer usage.

We can also compare the storage requirements of the Deighton algorithm against

the present algorithm. For the Deighton algorithm, the lists which need to be compared

have sizes which depend exponentially on image size. In the case of the new algorithm,

the storage requirements are set predominantly by the set of linear equations to be

-i solved. The storage requirements for this matrix are on the order of 2N 4 for an N

by N image. As the image size increases, the storage requirements for the Deighton

algorithm increase much faster than for the new algorithm.
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Chapter 7

Other Applications

There are other applications which may benefit from the ideas developed in this the-

sis. We discuss here two such situations. The first involves the general problem of fac-

torization of polynomials in two variables, while the second addresses two-dimensional

recursive filter stability testing.

7.1 Application to General Bivariate Polynomial
Factorization

As an example of where such an algorithm may be applicable, consider a two-

dimensional linear shift-invariant system which is specified by the difference equation

:':': ':: 451,

Z.bk'm - k. - 11 ak(X[M-k,n -1 (7.1)
k I k I
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where yjm, n] is the system response to an excitation x[m, n). The z-transform of the

response of this system to a unit impulse can be expressed as,
t':'E? E j, ak(W- z-_ A (w, z)

H(w, z) - w -k1  (7.2)
El E, bklu-rz -  B(w, z)

We see that A(w, z) and B(w, z) can be expressed as two bivariate polynomials in the

variables w-', z -1 . In characterizing H(w, z) one has to answer the question of whether

the representation given in (7.2) is minimal, i.e., whether there are some polynomials

A'(w, z) and B'(w, z) of total degree less than A(w, z) and B(w, z) respectively which

satisfy,

""A'(w, z)EI H(w,z) = B'(w,z) (7.3)

This is equivalent to asking whether A(w, z) and B(w, z) are such that

A(w, z) P(w, z)A'(w, z) (7.4)

B(w, z) P(w, z)B'(w, z) (7.5)

" where P(w, z) is a non-constant polynomial. In other words, one may ask whether

A(w, z) and B(w, z) are relatively prime (coprime). Several algorithms have been

developed to test whether two polynomials are relatively prime [46,471. However, these

tests are very complicated for large polynomials, since effectively, they generate the

resultant R4 B(z) described in Appendix B.

A necessary condition for the required P(w, z) to exist is that A(w, z) and B(w, z)

:'be factorable. Thus, by using a polynomial bivariate factorization algorithm, we can

check whether coprimeness is satisfied. If either A(w, z) or B(w, z) is irreducible, then

there is no need to use the more complicated coprimeness algorithms.
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': - There are some modifications required from the algorithm presented in Chapter 5.

.- These modifications are due to the fact that, unlike the phase retrieval problem, one

does not know a priori the degree of the factor isolated by the zero-tracking procedure.

"- Thus, although one can set a bound on the maximum number of homogeneous equations

which need to be solved, one does not know a priori the number of unknowns, i.e., the

number of coefficients in the polynomial to be isolated. In Appendix C, we discuss two

methods for estimating the total degree of the isolated factor. Here we demonstrate

the use of the second algorithm discussed in Appendix C.

" To illustrate the performance of our factorization algorithm, we have generated a

test polynomial p(w, z) given by,

w

z.[. 2 8 13 23 30 12

4 13 18 38 48 17
3 12 23 48 55 16
3 14 25 44 43 10
2 8 17 25 19 4
1 5 7 10 6 1

which can be expressed as the product of the following two polynomials,

w

z 2 2 1 (7.7)
-. 6 5 4

and

• ., 1.1

V'.' ,
.-'
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w

zL 1 101 (7.8)
1 0 1 1

2 222
4 3 2 1

In this example, the total degree of p(w,z) is 10. From Bezout's theorem, we

know that any other polynomial of total degree less than or equal to 10 which is prime

relative to p(w, z) can have at most 100 zeros in common with p(w, z). Thus we need to

calculate at most 101 zeros along a path pair (w(t), z(t)) consisting of ordinary points.

This way we are assured that these zeros correspond to a single irreducible factor of

p(w, z). The following matrix is then generated,

Z,1 z 2 ... z1° Z0 w2 . . . ziw" ... W °

M= 2  2 2 (101 by 66) (7.9)

1 z 0 1 Z 0 , 10•11 Z ... z~ Z1o W1o ... Z1o W~o W~o

Note that although the degree of p(w, z) is known, we need to assume a triangular

support for the coefficients of p(w, z). This is because we can only bound the total

degree of the factor of p(w, z), not necessarily its degree in each variable. Thus although

@1 p(w, z) has 36 non-zero coefficients, M has 66 columns. According to Appendix C, M

will have a rank deficiency, i.e., 66 - r(M), equal to

(10 - totdeg(d) + 1)(10 - totdeg(d) + 2)/2 (7.10)

where d(w, z) is the irreducible factor of p(w, z) isolated by our procedure. In order

to calculate the rank of M, we performed a QR decomposition of M; Table 7.1 shows

some of the diagonal elements of the triangular matrix R.
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diagonal element value
48 0.00534025

* - 49 0.00507684
50 -0.00145097
51 -0.00059735
52 4.45087e-15
53 -1.2814e- 14
54 8.82197e- 15
55 5.67471e-15

Table 7.1: Diagonal elements of triangular matrix after QR decomposition for calcu-
lating total degree of factor.

From this table we see that the rank of M is 51. Therefore, the total degree of

the factor d(w, z) isolated from p(w, z) is 6. Once the total degree of d(w, z) has been

determined, we can regenerate M with fewer columns,

.1 z 2 ... z, ,2W2 ... 3,u ...

, 1 z2 z2 " Z 2 W 2  . (101 by 15)

.:: 1 Z,0 ... ' , 0, 1o W ,0, -.. ,Z 0,W ,0 ... W 6'o
1 101  101 z101w1 01

(7.11)

' IA new QR decomposition of this matrix yields a single non-trivial null vector (to a

constant) which can then be associated with the coefficients of d(w,z), given below,

i-. W

z -.25 -.25 2.6e- 16 -. 25 -2.3e- 17 -8.3e- 17 -3.Oe- 17
-.25 2.1e- 16 -. 25 -. 25 5.9e- 16 1.3e- 16
-. 5 -. 5 -. 5 -. 5 -9.7e- 17
-1 -. 75 -5 -. 25
-2.1e- 16 5.7e - 16 4.6e - 16
-2.8e - 16 -2.1e - 16
2.9e- 16

(7.12)

We see that to a scale constant, the retrieved factor is equal to one of the generating
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polynomials.

The second example below shows how the algorithm can be used to test irreducibil-

ity.

For this example we consider the polynomial,

w

z 1 0 1 0 1
0 1 0 1 0 (7.13)
1 0 1 0 1

:':0 1 0 1 0

"' -. 1 0 1 0 1

In this case the total degree of this polynomial is 8, so a 65 by 45 matrix M of the

form given by (7.9) is generated. Table 7.2 shows the last 5 diagonal elements of the

triangular matrix calculated via a QR decomposition of M for this case.

diagonal element value

.. 41 -0.119653
42 -0.11235
43 0.110724
44 0.0845307
45 4.17397e-13

Table 7.2: Diagonal elements of triangular matrix after QR decomposition for irre-
ducibility test.

Since the rank deficiency of M is seen to be 1 in this case, we conclude that the

polynomial shown in (7.13) is irreducible.

7.2 Application of Root-tracking to Two-Dimensional
A Recursive Filter Stability Testing

-A further application of the ideas presented in this thesis lies in the field of
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stability theory of two-dimensional recursive filters. It is well known [45] that the

- question of whether a filter with rational z-transform transfer function,

•~~ =-(w, z)
H (w,z) = (7.14)

B(w,z)

12 •is stable or not depends on the location of the zeros of the denominator polynomial

B(w, z) 1. Specifically, it has been shown that if all branches of w(z) for z = exp(jv),

-" called root maps in the literature, are of magnitude less than one, then the filter

described in (7.14) is bounded-input, bounded-output stable. The most difficult part

of this test is showing that the branches of w(z) do not cross the unit circle in the

rw-plane, i.e., that A(ezp(ju), ezp(jv)) is never zero.

A computationally attractive algorithm for testing for filter stability relies on the

fact that the two-dimensional unwrapped phase must be continuous and periodic if

"-" .- " .all root maps are always less than one in magnitude [481. This procedure is fast and

efficient, as long as all the root maps are far from the unit circle. However, as the root

maps get close to the unit circle, the phase becomes almost discontinuous, rendering a

phase unwrapping algorithm helpless.

At this point it becomes more convenient to look at the root maps themselves,

rather than consider their effect on the phase. Shaw [481 proposes detecting when the

unwrapped phase is almost discontinuous and then doing a constrained search for a

minimum of the magnitude of A(ezp(Ju), ezp(iv)). However, for complicated filters,

the magnitude function is likely to have local minima leading to an erroneous answer or

"Strictly speaking. it is necessary to consider nonessential singularities of the second kind where
4 .4(e'. z) and D(,'. :) are zero simultaneously on the unit bicircle. However. this is extremely rare and is

.usually ignored in stability testing procedures.
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almost flat regions, which results in extremely slow convergence of the search algorithm.

In fact, in Shaw's example, the search for a local minimum took 14 times longer than

the phase unwrapping itself.

As an alternative, we propose that the root maps be tracked directly for those

frequency regions where the phase is almost discontinuous. In other words, calculating

accurately the branch of w(z) for z - exp(vo) to z - ezp(v,) in the range of v, vo < v <

*v, for which the phase is almost discontinuous. Such a procedure would provide exact

knowledge of whether the filter is stable, and if it is stable, how close are the zeros to

the unit circle, thus providing a margin of stability.

The actual calculation of the root maps for all values of z - ezp(jv) is also useful

as an aid for testing stability by itself. It provides a way of graphically portraying the

margin of stability of a filter, especially for small filters, such as 8 by 8.

As an illustration of the possible application of this algorithm to filter stability

testing, we used the differential equation method of Chapter 5 to calculate all the root

maps of the following filter,

z J 1.000000 -1.11870 .355 (7.15)
-1.000030 1.55704 -.550496
.400020 -.659803 .222204

," "" The polynomial corresponding to A(w, 1) was calculated and its roots determined.

Each of these roots provided an initial condition for the differential equation solver

Samples of the root map were thus calculated and are displayed in Figure 7.1.

From the samples of the root maps calculated it was inferred that a root map may

cross the unit circie. The root map was recalculated in a smaller interval centered
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around the region where the root map may cross the unit circle. The resulting root

map is shown in Figure 7.2. Since this precise root map does not cross the unit circle,

0.9- LI
.- '.." -,0.8 -

0.7-

0.6-

0.5 0.6 0.' 0.8 0.9 {w

w-plane

Figure 7.2: Single root map of two-dimensional recursive filter over small region.

we can be confident that the filter is stable.
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Chapter 8

- !Summary and Suggestions for
Future Research

The object of this thesis has been to develop a better algorithm for reconstruction

'* - of two-dimensional discrete signals from the Fourier transform magnitude. To this effect

we have developed a new closed-form algorithm for reconstruction which is guaranteed

to yield a correct solution given accurate data and which is computationally much more

efficient than previous closed-form algorithms, both in terms of time of execution and

. memory requirements. The algorithm has been applied to a large number of images

p. successfully.

We have noted however, that memory requirements preclude its use for images larger

than 25 by 25 in the computer facilities available to us. Furthermore, the algorithm is

extremely sensitive to noise in the given Fourier transform magnitude information.

Many algorithms have been proposed in the mathematical literature for solving

*1 large sets of linear equations in a memory efficient manner; for example, the conjugate

*: -gradients method. Such an approach may be fruitful in reducing the memory require-

ments of our phase retrieval procedure. This would allow the reconstruction of much

larger images.
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The problem of noise sensitivity is an important one. It is not clear at this point

whether the sensitivity problem is particular to our algorithm only or is shared by

other closed-form algorithms. In a sense, this property is characteristic of the phase

retrieval problem since once noise is added to the Fourier transform magnitude or

the autocorrelation signal, the reconstruction problem is replaced by an approximation

problem, where no solution will satisfy the data exactly. In this case we need to decide

on a criterion of goodness of match between a candidate solution and the measured

data. Such a criterion should be amenable to analysis and the development of an

appropriate closed-form algorithm. The GSF algorithm of Fienup does reduce an error

norm; however, it may not drive the norm to its minimum value. In our opinion, solving

the phase retrieval approximation problem should be a major focus of future research.

In developing our phase retrieval algorithm we have considered it as strictly a poly-

nomial factorization problem. We made little use of the fact that the factors of p,(w, z),

p,(w, z) and P,(w, z), are not independent but are intricately related. The use of this

symmetry may prove useful in advancing the ideas presented here.

Finally, we have presented a few possible applications of.the new factorization a!-

gorithm and root-tracking procedure to the area of two-dimensional filter design. It

would be very interesting to develop other applications of these ideas.
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Appendix A

Convergence of Iterative
Algorithms for Phase Retrieval

In this appendix we conduct a study of the convergence properties of the Fienup

algorithms for reconstruction from Fourier transform magnitude. To achieve this aim

we have conducted a Monte Carlo study, i.e., the application of each algorithm to a

large number of randomly generated images. The desire for a large sample size dictated

that a small image size be used. However, such a study does provide a qualitative idea

of the behavior of the algorithms in general.

Each trial consisted of the generation of two random images; the first image was

used as the target image to be reconstructed, while the second was used as an initial

estimate. There were four sets of experiments, studying the effect of a symmetric vs.

non-symmetric support constraint and image size. The parameters of each of the four

experiments is summarized in Table A.1.

In the firs: two experiments, "A" and "B". the images consisted of a 4 by 4 field

of independently generated random numbers uniformly distributed between 0 and 1.

It has been noted that the iterative algorithms perform better when a nonsymmetric
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experiment image size support max. iterations times repeated
exA 4 x 4 rect. 600 100

B 4 x 4 triang. 600 100

C 8 X 8 rect. 400 50
D 8 x 8 triang. 400 50

Table A.1: Summary of parameters used in convergence study of iterative phase re-
trieval algorithms.

region of support is known, for example, if the support is triangular. To study the

effect of a nonsymmetric support, experiment "A" used a rectangular support, while

experiment "B" used a triangular support by setting the the lower triangular half of the

image to zero. The target image and the initial estimate were generated independently

W and no effort was made to generate a good initial estimate, other than satisfying the

known spatial domain constraints. Thus, we are only interested in the case where

the only a priori information is the Fourier transform magnitude, the signal support,

and possibly, that the signal is non-negative. From the target image, zero padded to

an 8 by 8 image, the discrete Fourier transform was calculated and the magnitude ]
used as information to the reconstruction algorithms. Each algorithm was run with

the same target and initial estimate images. For each algorithm, an error measure

was calculated between the estimated image at the midpoint iteration and the target

image. The algorithm was then continued and the error measure was recalculated at

the final iteration. The trials were repeated, with different target and initial estimates,

100 times. The error measure used was the normalized mean squared error (NMSE)

between the estimate zi m, nI and the target image z[m, n].

In= T-''(, m, n1 - x~m, nj)2NMSE = F z[m, nl 2  (A.)

The NMSE was minimized over all trivial associates of r,[m, nj, i.e., the estimate was
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successively multiplied by -1, and/or rotated by 180 degrees.

In order to study the effect of image size on the quality of reconstruction, the

experiments described above were repeated for images consisting of a rectangular or

triangular field of size 8 by 8, resulting in experiments "C" and "D". In this case, a

total of 400 iterations were used and the experiment was repeated 50 times. Again the

NMSE was recorded both at the midpoint and final iteration.

After conducting these experiments we were able to discern certain properties of the

."iterative algorithms studied. Calculating the NMSE at the middle iteration as well as

the final iteration allows us to discern if the algorithm has progressed substantially in

W" Ithe intervening iterations. A clear way to compare the performance of these algorithms

at the midpoint and final iteration is to draw a scatter plot where the abscissa of each

point is the NMSE value at the midpoint iteration while the ordinate is the NMSE

value at the final iteration. Points which lie close to the main diagonal indicate that

no change has occurred in the intervening iterations while points substantially below

the main diagonal indicate substantial improvement between the midpoint and final

iterations.

Figures A.1 to A.3 show scatter plots of the NMSE at the midpoint and final

iteration for each algorithm during experiment "A". A similar set of scatter plots are

displayed in Figures A.4 to A.6 for experiment "B".

In the above figures, we see that for NMSE greater than 10-', there is no change

between the m*dpoint and final iteration in almost all trials. Therefore, we can assume

that for large NMSE ( greater than 10-
4) the algorithms have reached a fixed point of

the iterative procedure by the final iteration, and thus cannot be expected to make any
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Figure A.1: Error at 600th vs. 300th iteration for GSF - rectangular 4 by 4. Number

* . in box denotes number of trials which fell in that square.
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more progress in subsequent iterations. The above observations are consistent with the

results of previous authors [19,2,21) who have noted the slow progress of the GSF and

GSF-P algorithms.

Confidence that a fixed point of the iterative procedure has been reached allows

us to evaluate the success rate of each algorithm. For this purpose, we need to use a

criterion for success. Although an appropriate cutoff value for an acceptable NMSE

is difficult to assess, especially for small images as those considered in this paper, we

have used a cutoff of 10-2 and 10-', which correspond to approximately one and two

significant figures for each pixel value, respectively. For this cutoff, the success rate of

1each algorithm for 4 by 4 images is noted in Table A.2.

Success rate of convergence (percent)
support type =rectangular triangular
cutoff 10-2 10- 4  10-2 10-4

GSF 21 9 59 53
GSF-P 22 12 60 55
HIO 22 12 60 52

Table A.2: Summary of algorithm convergence as a function of support and criterion
for 4 by 4 image.

him -The experiments described above were repeated for 8 by 8 images, experiments

"C" and "D". Scatter plots of the results are shown in Figures A.7 to A.12. These

plots allow us to again conclude that for the vast majority of trials, a fixed point of

- #. the iteration has been reached by the final iteration. The success rate of the iterative

algorithms for 8 by 8 images is summarized in Table A.3.

Conclusions derived from Tables A.2 and A.3 are discussed in the main text.
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Appendix B

A Bound on the Number of Finite
Common Zeros Based on
Polynomial Degree 1

V rRecall that Bezout's theorem is concerned with determining the number of com-

mon zeros of two bivariate polynomials. It is restated here for convenience,

0 Theorem B.I If p(w, z) and q(w, z) are bivariate polyjnomials of total degree r and
s respect:vely with no common factors, then there are at most rs distinct pairs (w, z)
where

p(w, z) =q(w, z) =0 (B.1)

Since Bezout's theorem is concerned with total degree as opposed to degree in each

variable, it pertains most generally to polynomials whose coefficients have triangular

support as shown in Figure B.1.

In our case of reconstruction from Fourier transform magnitude, this corresponds

tc an image which has a triangular support. On the other hand, one is many times

interested in images with square or rectangular support as shown in Figure B.2.

For the case when the polynomials under consideration have rectangular support,

'The derivation preeuted here is due to a collaboratiou between A. Zakhor and the author and is
-a ,, ,lcribed in 49..
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Figure B.1: Non-zero coefficients for a polynomial of total degree 4.
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rFigure B.2: Non-zer-o coefficients for a polynomial of degree (2,2).
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we are able to lower the bound on the number of common finite zeros from the bound

set by Bezout's theorem. Specifically if the two relatively prime polynomials p(w, z)

and q(w, z) are given by

P(w' Z) W Z Lm rZn (B.2)
m0O n0O

and

q(w, z) = q.nWm (B.3)
m0O n0O

the upper bound on the number of common finite zeros set by Bezout's theorem is

(NI, + M,)(NI + M.). Our objective is to establish a tighter upper bound on the

number of common finite zeros of p(w, z) and q(w, z).

Wi Before proceeding, we need to review several results concerning the resultant of poly-

nomials in one or two variables. The resultant Rpqof two one-dimensional polynomials

p(w) and q(w)
%p

p(w) = -W (B.4)
ti=0

Nf,

q(w) qn= (B.5)
n0O

* (B.6)

is defined [501 as the determinant of the (Mp + Mq) by (Mp + Mq) matrix

P0 PI ', 0 0 .. 0
0 P0 PI Aw P- I PMN,, 0 .. 0

Lv0 0 PN (B.7)
qo q, q* f 0 0 . .. 0
0 q0 q, q.Nfq-i q..f 0 . 0 . . 0

0 0 . .. qo . * f
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A basic property of resultants is stated in the following theorem [50j,

Theorem B.2 When the polynomials p(w) and q(w) have numerical coefficients, a

necessary and sufficient condition that they shall have a finite or infinite common root

is thatJR., 0.

Consider now the two relatively prime bivariate polynomials p(w. z) and q(w, z)

defined in (B.2) and (B.3) expressed as polynomials in w with coefficients which are

polynomials in z,

p(w, Z) =p 0(z) + P1(zjw + + pM%,(z)wUrlt (B.8)

q (w, z) =qo (z) + q I kz) w + + qfz A (B.9)

We can define the resultant of p(w, z) and q(w, z) with respect to w as the determinant

of the (Mp + Mq) by (Mp + Mq) matrix, M(z), with polynomial entries:

M(z) =Iz .'" Z

po(z) p1(z) p..%jz 0 0 0 1

0nz qo(z) q .z q.,t 1-(z) q.t,()0 0 0

o qooz q() . q 4.. (zq 3 (z) 0 0 [, 0z

L 0 0 .. q z).. q 1 ()j(B. 10)

*VThis resultant is a function of the remaining variable z and is denoted by Rr q( z).

Expanding the determinant of the above matrix, and taking into account that each

p,(z) and qji~z) is of degree at most N, and Nq, respectively, we can conclude that

Rpq(z) Is a polynomiai of degree NMq +1 NqM, or less- It can be shown jlbl, that if
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p(w, z) and q(w, z) are relatively prime then Rq(z) is not identically zero. Moreover,

if (wo, zo) is a common zero of p(w, z) and q(w, z) then R(zo) = 0. Thus the zero sets

of p(w, z) and q(w, z) have at most NpMq + NqMp values of z in common.

As our argument stands, we have not yet placed any tight limit on the number of

intersections of p(w, z) and q(w, z) since for each z, which is a root of Rq(Z) there could

be a large number of w,, such that for each j,

p(wj, z,) = q(w,,z,) = 0 (B.11)

In order to specify the number of wi for each zi, we need to study the behavior of

!4kq(z) in the vicinity of each zi.

.. Theorem B.3 If at each zo there are k values of w, wi, such that

C p(w,,zo) =q(wj,zo) = ofor = 1,..,k (B.12)

then Rpq(z) has a zero of multiplicity k at z0.

The above theorem implies that p(w, z) and q(w, z) as defined in equation (B.2)

and (B.3) have at most NpMq + NqMp zeros in common.

In order to prove Theorem B.3 we need to review some results on matrices with

polynomial entries, relating to the Smith Normal Form [51],

Theorem B.4 Let A(z) be an n by n polynomial matrix of normal rank r. We can

. find unimodular matrices {P(x), Q(x)}, such that

B(z) = P(x)A(z)Q(x) (B.13)

and

1. B(z) is a diagonal polynomial matrix called the Smith Normal Form of A(z).
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2. The first r diagonal elements of B(z) are monic polynomSals P(), p2(z),.,

p,(z).

3. The remaining diagonal elements, if any, are zero.

4. p,(z) divides pj+(z) fori= 1,...,r- 1.

Normal rank in the above theorem is defined in [51]. The unimodular polynomial 1

matrices of the above theorem are defined to have nonzero constant determinant inde-

pendent of z. Therefore, if r = n, i.e., if A(z) has full normal rank then,

Aof pr(odet(B(x)) = p(x) (B.14)

Also, from part (4) of Theorem B4 we can conclude that if pi(z) = 0 then pk(X) 0

" for k > i. From the above theorem, we can derive the following,

Theorem B.5 Let A(x) be a polynomial matrix of full normal rank. If A(xo) has rank

deficiency of k then det(A(z)), has a zero of multiplicity k at zo.

Proof: Using Theorem B.4 we can find B(z), the Smith normal form of A(z). Since

P(z) and Q(x) are unimodular, B(x) is of full normal rank. Furthermore, the ranks of

B(z) and A(x) at each value of x, including z 0 , are equal. Therefore B(zo) has rank

deficiency of k. This means that pn(Zo) = PI(ZO) = = pn-k+I(Xo) = 0. Therefore,

from (B.14) det(B(z)) has a zero of multiplicity k at xo. Since the determinant of A(x)

.' is within a constant factor of that of B(z), A(z) also has a zero of multiplicity k at z0.

Using Theorem B.5, we can return to Theorem B.3,

Proof: (Theorem B.S) Suppose that for z0 there are k common finite zeros wi, j =

1, k between p(w, z) and q(w, z). Then the matrix M(zo) defined by (B.10) must
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haeklinearly idpnetnull vectors given by:

* . forj=,., k. Thus M(zo) has rank deficiency of k. Furthermore, since p(w, z) and

q(w, z) have no common factors, 4,q(z) is not identically zero, so M(z) has full normal

rank. From Theorem B.5 then, ,(z) has a zero of multiplicity k at z0 . [I

From Theorem BA3 and the fact that )4 q,(z) is a polynomial of degree Np Mq±NqMp,

we get immediately, the main result of this appendix,

Theorem B.6 Let p(w, z) and q(w, z) be two polynomials of degree (Mp, Np) and
(Mq, N.) with no common factors, then there are at most NpMq + NqMp pairs of finite
cornplex numbers (w, z) such that

p(w, z) =q(w, z) =0 (B 16)
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Appendix C

Calculating the Degree of an
Irreducible Factor

In this appendix we want to consider the situation where the degree of an irre-

ducible factor of the polynomial p(w, z) is not known. From the path-tracking algorithm

developed in Chapter 5, we have generated a large number of zeros of the polynomial

p(w, z). We denote these zeros by (Wk, zk,) for k = 1,.,K. We will see later that

for this case K should be picked to be the maximum allowable by Bezout's theorem,

totdeg(p)2 + 1. From our earlier arguments, these zeros all correspond to a single ir-

reducible factor of p(w, z), which we will denote by d(w, z). It is this factor which we

seek to isolate. Although the total degree of p(w, z) is known, we only know that the

total degree of d(w, z) can be at most totdeg(p). In this appendix we describe two

mechanisms for calculating totdeg(d).

The first mechanism is the simplest conceptually. Assume that totdeg(d) = 1. Then

for all zeros (Wk,Zk), there must be constants doo, do,,do which are not all zero such

that

doo + dowk + dlozk = 0 (C.1)
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for all k. Equivalently, we need that the matrix

1 Zj

W2 Z2
M,= (C.2)

1WK ZK

have a non-trivial nullspace, i.e., a non-zero vector z such that Mz = 0. Thus, the

first step of this procedure is to caiculate the rank of M I , which we will symbolize by

r(Mi). If it is less than 3, then totdeg(d) = 1. On the other hand, if M, has full rank,

then we generate M 2 defined by,

611W, W2 ZI WiZI Z2

1w1
W2 W Z2  W2 Z2  Z(..-.,M2 (C.3)

1WK WK~ ZK WK ZK 4K

-- Again, the rank of M 2 is calculated. If it is less than 6, then totdeg(d) 2, otherwise,

we calculate M 3.Thus the algorithm proceeds by successively calculating the rank of

:2. M. and checking if the rank of M, is less than (n + 1)(n + 2)/2. The smallest n for

which this condition is true is the total degree of d(w, z).

For large polynomials, the procedure described above becomes very inefficient in

some cases. For example, if the polynomial p(w, z) is itself irreducible, totdeg(p) differ-

ent matrices and rank determinations would be required.

It turns out that by examining the rank of only the last matrix M, for n = totdeg(p)

we can calculate the degree of d(w, z). For simplicity, we will call this M. simply M for

the rest of the discussion. Since by assumption d(wk, zk) = 0 for all k, the coefficients
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of d(w, z), with appropriately padded zero coefficients, form a null vector of M. In fact,

the coefficients of any polynomial of total degree totdeg(p) which has d(w, z) as a factor

form a null vector of M. Conversely, with any null vector of M, we can associate a

"null" polynomial with d(w, z) as a factor by virtue of Bezout's theorem. The problem

now is to find the dimension of this nullspace. Consider the set of polynomials,

-'" -d(w, z), zd(w, z), wd(w, z),.., w' z d(w, z) (C.4)

for all m, n such that the total degree of w'znd(w, z) is less than or equal to totdeg(p).

=-'."Then all the null polynomials can be expressed as a linear combination of these polyno-

mials. In fact the "coordinates" of a null polynomial q(w, z) = d(w, z)a(w, z) are exactly

the coefficients of a(w, z). Thus the set of polynomials in (C.4) span the nullspace of M.

We have not shown however, that these polynomials are linearly independent. Suppose

that they form a linearly dependent set, then we can generate a set of coefficients ci,

not all zero such that

L ci,,wiz'd(w, z) M0 (C.5)

In other words, there exists a polynomial c(w, z) such that c(w, z)d(w, z) = 0 for all

w, z. However, since d(w, z) is not identically zero, c(w, z) must be zero. Thus the

polynomials in (C.4) form a linearly independent set which spans the nullspace of M.

From this argument we see that the dimension of the nullspace is simply the number
-

of polynomials in the set described in (C.4), which in turn is simply the maximum

number of coefficients in the polynomial c(w, z) in (C.5). The total degree of c(w, z) is

totdeg(p) - totdeg(d). A polynomial of total degree n has (n 1 1)(n + 2)/2 coefficients;
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hence, the dimension of the nulispace of M is

(totdeg(p) - totdeg(d) + 1)(totdeg(p) - totdeg(d) + 2)/2 (C.6)

Note that not all possible values for the rank of M are possible, since some values

for the rank of M lead to non-integer values of totdeg(d). The procedure to calculate

totdeg(d) can be summarized as follows:

1. Generate M consisting of (totdeg(p) +1)(totdeg(p) + 2)/2 columns and K=

totdeg(p)2 + 1 rows.

2. Calculate the rank of M, r(M).

3. The value of totdeg(d) is given by

ttd~' =2totdeg(p) + 3 + V(2totdeg(p) + 3)2 - 4r(M)

toteg~d 2(C7
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